
Chapter 5

Model-Based Measurement of Sector

Concentration Risk in Credit Portfolios*

5.1 Fundamentals and Research Questions

on Sector Concentration Risk

As demonstrated in Chap. 2, within the ASRF model it is assumed that there exists

only one single risk factor that influences the defaults of all loans in the portfolio

(assumption B). Thus, industry-specific or geographical effects are neglected,

which can lead to an inappropriate capital requirement for real-world portfolios if

this is measured on the basis of a single-factor model like the IRB Approach of

Pillar 1. Against this background, banks are demanded to measure concentration

risks and “explicitly consider the extent of their credit risk concentrations in their

assessment of capital adequacy under Pillar 2”267 of Basel II, but it is not specified

how this should be done. Although there exist some models that explicitly deal with

the measurement of sector concentration risk, these are mostly not consistent with

Pillar 1 of Basel II – sometimes within the derivation and sometimes within the

implementation. Consequently, it remains unclear if or how much additional

regulatory capital is needed regarding risk concentrations. However, this issue is

not only relevant from a regulatory perspective. Generally, it is not worthwhile to

have a major gap between the regulatory and the “true” economic capital.

A homogenization of these values is one goal of the new Capital Accord and

would simplify the management of the credit portfolio.

In order to measure sector concentration risk consistent with the Basel II frame-

work, it has to be reconsidered that the IRB Approach was calibrated on well-

diversified bank portfolios.268 Thus, the additional capital requirement concerning

*The main results of this section comply with G€urtler et al. (2010).
267BCBS (2005a), } 773.
268Cf. Sect. 3.3.
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sector concentrations has to take this specific calibration of the model used for

calculating the Pillar 1 capital requirement into consideration. Consequently, only

banks with a lower diversification across sectors than these well-diversified banks

should assess additional capital under Pillar 2. As data on the characteristics of these

well-diversified portfolios is not publicly available, it is not obvious how we can

use them as a reference portfolio in order to modify and adjust the existing models

on sector concentration risk to achieve consistency to the Basel framework.

Furthermore, comparative analyses on models which are able to measure sector

concentration risk are scarce. Against this background, we address the following

questions:

l How can the existing approaches be modified and adjusted to be consistent with

the Basel framework? Is the risk measure Value at Risk problematic when

dealing with sector concentration risk?
l Which methods are capable of measuring concentration risk and how good do

they perform in comparison? What are the advantages and disadvantages of

these methods?

Subsequently, we propose a methodology how multi-factor models can be

used in a way that is consistent with the Basel II framework. This can be seen as

expanding the validity of the Basel formula from the inner region of Fig. 3.2 to

the whole region. To our best knowledge, this is the first work that deals with this

problem.269 Furthermore, we analyze the models of Pykhtin (2004), Cespedes

et al. (2006), and D€ullmann (2006), which are designed to measure sector

concentration risk. We implement our multi-factor setting for these models and

use the risk measure ES instead of the VaR, which leads to some new approxi-

mation formulas. Based on this, we compare the accuracy and runtime of the

different models within a simulation study. Except the rather brief analysis of

D€ullmann (2007), this is the first comparison of different approaches concerning

sector concentration risk. In this context, we also use our framework to test

whether the lack of coherency of the widespread used VaR is relevant in

connection with the measurement of concentration risk.270 Since the non-

coherency of the VaR is typically only illustrated in contrived portfolio exam-

ples, we analyze the relevance of this issue in more realistic settings within our

simulation study.

269The multi-factor model of Cespedes et al. (2006) is also specified against the background of the

regulatory capital formula. However, within the deriviation of their formulas, the authors assume

the regulatory capital requirement to be the upper barrier of risk, which is not consistent with the

view of supervisors that we presented in Sect. 3.3 and especially in Fig. 3.2. Cf. Sect. 5.2.3 for

details regarding this issue.
270Cf. Sect. 2.2.3.
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5.2 Incorporation of Sector Concentrations Using

Multi-Factor Models

5.2.1 Structure of Multi-Factor Models and Basel II-Consistent
Parameterization Through a Correlation Matching
Procedure

To obtain a more realistic modeling of correlated defaults in a credit portfolio, we

will introduce a typical multi-factor model. In such a model, the dependence

structure between obligors is not driven by one global systematic risk factor but

by sector specific risk factors. Additionally, the group of obligors is divided into S
sectors. Hereby, a suitable sector assignment is important,271 i.e. asset correlations

shall be high within a sector and low between different sectors. In contrast to the

single-factor model, in which the correlation structure of each firm is completely

described by r, in a multi-factor model we distinguish between an inter-sector
correlation rInter and an intra-sector correlation rIntra. The inter-sector correlation
describes the correlation between the sector factors and the intra-sector correlation

characterizes the sensitivity of the asset return to the corresponding sector factor.

Thus, the asset return of obligor i in sector s can be represented by272

~as;i ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ~xs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi; (5.1)

where ~xs is the sector risk factor (with s ¼ 1, . . ., S), and ~xi stands for the

idiosyncratic factor. The variables ~xs and ~xi are normally distributed variables

with mean zero and standard deviation one that are independent among each

other. Since the sector risk factors ~xs are potentially dependent random variables

that are difficult to deal with,273 we make use of the possibility to present the sector

risk factors as a combination of independently and standard normally distributed

factors ~zk (k ¼ 1, . . ., K)

~xs ¼
X

K

k¼1

as;k � ~zk with
X

K

k¼1

a2s;k ¼ 1; (5.2)

271As shown by Morinaga and Shiina (2005), an assignment of borrowers to the wrong sectors

usually leads to a higher estimation error than a non-optimal sector definition.
272In order to allow for negative intra-sector correlations, the factor loading could also be written

as ri instead of
ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i

p
. However, it is economically reasonable to assume that there is a positive

relationship between the asset return of an obligor and the corresponding industry-sector. Thus, the

chosen notation should be no practical limitation.
273Concretely, the independence of the risk factors is essential for the derivation of the Pykhtin-

model in Sect. 5.2.2.
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in which the factor weights as;k are calculated via a Cholesky decomposition of the

inter-sector correlation matrix.274 Hence, the inter-sector correlation is given as

rInters;t :¼ Corr ~xs; ~xtð Þ ¼
X

K

k¼1

as;k � at;k: (5.3)

From (5.1) and (5.2), the asset correlation between obligors i in sector s and

obligor j in sector t is given by

Corr ~as;i; ~at;j
� � ¼

1 if s ¼ t and i ¼ j;
ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;j
p

if s ¼ t and i 6¼ j;

ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i
p � ffiffiffiffiffiffiffiffiffiffiffiffirIntra;j

p �P
K

k¼1

as;k � at;k if s 6¼ t:

8

>

>

>

<

>

>

>

:

(5.4)

Obligors in the same sector are highly correlated with one another when their

intra-sector correlation is high. The correlation of obligors in different sectors also

depends on the factor weights, which are derived from the inter-sector correlation.

Hence, the dependence structure in the multi-factor model is completely described

by the intra- and inter-sector correlations.

Taking (2.8) into account, the portfolio loss distribution can be written as

~L ¼
X

S

s¼1

X

ns

i¼1

ws;i � LGDs;i � 1f~as;i<F�1ðPDs;iÞg; (5.5)

where ns is the number of obligors in sector s. The portfolio loss distribution can be
determined numerically with Monte Carlo simulations. The procedure is in princi-

ple the same as described in Sect. 2.4 in context of the Vasicek one-factor model. In

each simulation run, the sector factors as well as the idiosyncratic factor of each

obligor are randomly generated. Herewith, the asset return is calculated according

to (5.1). If ~as;i is less than a threshold given by F�1ðPDiÞ, obligor i defaults. The
portfolio loss is determined with (5.5) by summing up the exposure weights wi

multiplied by LGDi of each defaulted credit. To get a good approximation of the

“true” loss distribution, we choose 500,000 runs for our subsequent Monte Carlo

simulations. After running the simulation and sorting the loss outcomes, we get the

portfolio loss distribution. The ES at a given confidence level a can be calculated

with (2.47).

To calibrate the multi-factor model, most variables can be chosen identically

to the single-factor model. The only difference is the correlation structure that

274This approach is a common mathematical method to generate correlated random variables and

leads to the identical number of independent risk factors ~zk and dependent sector factors ~xs, that is
K equals S. Another common method to determine independent risk factors is the principal

component analysis, which leads to a reduced number of risk factors.
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generally consists of inter- and intra-sector correlations as described above. The

matrix of inter-sector correlations is usually derived from historical default rates or

from equity correlations between industry sectors. The intra-sector correlations can

be derived from historical default rates, too. The problem of a derivation based on

historical default rates is that there are not always enough observations to get stable

results. This is even more problematic if it is assumed (like in Basel II) that the

correlation and the PD are interdependent. Furthermore, the results from the multi-

factor model would normally not be consistent with Basel II because the correlation

structure is completely different. Thus, it would not be possible to identify (consis-

tent with Pillar 1 of Basel II) whether there is need for additional regulatory capital

under Pillar 2.

For both reasons, the intra-sector correlations could be chosen analogously to the

Basel II formula

rBasel ¼ 0:12 � 1� e�50�PD

1� e�50
þ 0:24 � 1� 1� e�50 �PD

1� e�50

� �

(5.6)

for corporates. This is what Cespedes et al. (2006) did in their analyses. But this

assumption is critical for the following reason: The validity of this formula for the

intra-sector correlations is equivalent to the statement that the regulatory capital

calculated via the formula of Pillar 1 is an upper barrier of the true risk. This

property in turn is only fulfilled if either only one sector exists or if all sectors are

perfectly correlated. In all other cases there is an effect of sector diversification,

which leads to a lower capital requirement compared to the Basel framework.

Beyond, the Basel Committee does not intend the Basel II correlation formula to

exclusively reflect the intra-sector correlation. Instead, the framework is calibrated

on well-diversified portfolios, as demonstrated in Fig. 3.2, implying that the corre-

lation formula is chosen in a way that the single-factor model leads to a good

approximation of the “true” risk based on the full correlation structure in a multi-

factor model. Cespedes et al. (2006) have already recognized this criticism and

have mentioned that it should be possible to use some scaling up for the intra-sector

correlations and the resulting capital. However, their calculations are based on the

formula above.

Alternatively, the intra-sector correlation could be chosen in a way that the

regulatory capital RC can be matched with the economic capital ECmf, which is

simulated for a well-diversified portfolio within a multi-factor model. Therefore,

we define the “implicit intra-sector correlation” rðImpliedÞ
Intra by

ECmf rInter; r
ðImpliedÞ
Intra

� �

¼ RC rBaselð Þ: (5.7)

Unfortunately, the portfolios for which the calibration was done by the Basel

Committee including the assumed inter-sector correlation structure are not publicly

available. Thus, at first we have to choose a concrete inter-sector correlation and

determine the implicit intra-sector correlation for some hypothetical, well-diversified
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portfolios via Monte Carlo simulations with several parameter trials. This approach is

related to Lopez (2004), who empirically determines the single correlation parameter

for the ASRF model that leads to the same 99.9%-quantile as KMV’s multi-factor

model for several portfolio types (geographical region, PD, and asset size categories)

using a grid search procedure. Thus, in the approach of Lopez (2004), the left-hand

side of (5.7) is given and the single correlation parameter of the right-hand side is

determined, whereas we are searching for the intra-sector correlation on the left-hand

side that leads to a match of both models when the other parameters, especially the

single correlation parameter of Basel II, are exogenously given.

As mentioned above, the required inter-sector correlation matrix could be

estimated from historical default rates or from time series of stock returns.275

D€ullmann et al. (2008) demonstrate on the basis of an extensive simulation study

that it is recommendable to use stock prices instead of historical default rates since

this involves smaller statistical errors. Against this background, we rely on equity

correlations, too, and use the correlation matrix of the MSCI EMU industry indices

computed by D€ullmann and Masschelein (2007) for the inter-sector correlation

structure (see Table 5.1).276

Our definition of a well-diversified portfolio is based on the overall sector

concentration of the German banking system, which can be found in Table 5.2.277

Even if it is theoretically possible to achieve lower capital requirements through

a different sector decomposition, this can only be done by a restricted number of

banks, since a deviation from the market structure of all banks immediately leads to

a disequilibrium. In addition, the total number of credits is assumed to be n¼ 5,000

to guarantee low granularity.

Table 5.1 Inter-sector correlation structure based on MSCI industry indices (in %)a

Sector A B C1 C2 C3 D E F H I J

A: Energy 100 50 42 34 45 46 57 34 10 31 69

B: Materials 100 87 61 75 84 62 30 56 73 66

C1: Capital goods 100 67 83 92 65 32 69 82 66

C2: Comm. svs. and supplies 100 58 68 40 8 50 60 37

C3: Transportation 100 83 68 27 58 77 67

D: Consumer discretionary 100 76 21 69 81 66

E: Consumer staples 100 33 46 56 66

F: Health care 100 15 24 46

H: Information technology 100 75 42

I: Telecommunication services 100 62

J: Utilities 100
aSee D€ullmann and Masschelein (2007), p. 64

275An overview of the literature regarding the measurement of asset correlation parameters can be

found in D€ullmann et al. (2008) and Grundke (2008).
276The correlation structure based on the MSCI US is similar, see D€ullmann and Masschelein

(2007).
277D€ullmann and Masschelein (2007) notice that the concentration is very similar to other

countries like France, Belgium, and Spain.
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If we assume a constant intra-sector correlation, the best match is achieved by

(approximately) rðImpliedÞ
Intra ¼ 25%.278 The concrete results, however, vary with the

portfolio quality (see Table 5.3).279 Thus, using a constant intra-sector correlation

can lead to a significant underestimation of economic capital for high-quality

portfolios and to an overestimation for low-quality portfolios.

To reduce the deviation, the intra-sector correlation should be decreasing in PD.

We found that the following intra-sector correlation function leads to a good match

for portfolios with different quality distributions:

rðImpliedÞ
Intra ¼ 0:185 � 1� e�50�PD

1� e�50
þ 0:34 � 1� 1� e�50�PD

1� e�50

� �

: (5.8)

Thus, we use the correlation function type from Basel II but the correlation range

is from 18.5 to 34% instead of 12 to 24%.280 It has to be noted that this formula is

Table 5.3 Implicit intra-

sector correlations for

different portfolio qualities

Portfolio type/quality Implicit intra-sector

correlation (%)

(I) Very high 30

(II) High 28

(III) Average 25

(IV) Low 23

(V) Very low 21

Table 5.2 Overall sector

composition of the German

banking systema

Sector Exposure weight (%)

A: Energy 0.18

B: Materials 6.01

C1: Capital goods 11.53

C2: Comm. svs. and supplies 33.69

C3: Transportation 7.14

D: Consumer discretionary 14.97

E: Consumer staples 6.48

F: Health care 9.09

H: Information technology 3.20

I: Telecommunication services 1.04

J: Utilities 6.67
aCf. D€ullmann and Masschelein (2007), p. 63

278This value results on the basis of both measures (VaR and ES) at the respective confidence level

as described in Sect. 4.3.1. The result is consistent with D€ullmann and Masschelein (2007), who

use a constant intra-sector correlation of 25% in their analysis.
279See Fig. 4.7 for the portfolio characteristics.
280We tried several different functional forms but the formula above performed best. The multi-

pliers 18.5% and 34% in function (5.8) were determined with a grid search using a reasonable

parameter range, which is similar to the procedure of Lopez (2004) used for the single correlation

parameter.
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still a substantial simplification, as we assume that the intra-sector correlation is

PD-dependent only. By contrast, empirically there are also inter-sectoral diffe-

rences of this parameter.281 In principle it would be possible to capture both effects,

e.g. by multiplying a sector-specific factor to (5.8), which covers the relation of the

empirically observed correlations.282 Of course, the absolute level of the resulting

correlations would usually be different from the empirical observations to keep

Basel II consistent results. But for convenience, we rely on the PD-dependent

formula (5.8) in our following analyses.

Hence, all additional input data needed for typical multi-factor models, e.g.

using Monte Carlo simulations, are given with Table 5.1 and (5.8). Using these

values, the multi-factor models should be consistent with the Basel framework.

Thus, the measured economic capital is only lower than the regulatory capital if

the portfolio is less concentrated than a typical, well-diversified portfolio, and the

needed economic capital is above the capital requirement of the regulatory frame-

work if there is more concentration risk in the credit portfolio. In order to avoid

time-consuming Monte Carlo simulations, there exist some multi-factor models for

an approximation of the portfolio risk. These will be presented subsequently.

5.2.2 Accounting for Sector Concentrations with the Model
of Pykhtin

5.2.2.1 Derivation of the VaR-Based Multi-Factor Adjustment

In this section, the multi-factor adjustment of Pykhtin (2004) is examined. After

explanation of the approach and derivation of the multi-factor adjustment formula

for the VaR, the ES-based formula is calculated. Since the main shortcoming of the

model is the time-consuming calculation for large portfolios, we focus on this issue

thereafter and demonstrate how the approach can be implemented in a way that

calculation time is reduced significantly.283

The multi-factor adjustment is an extension of the granularity adjustment pre-

sented in Chap. 4, which was introduced by Gordy (2003), Wilde (2001), and

Martin and Wilde (2002), for multi-factor models and provides an analytical

method for calculating the VaR and ES of a credit portfolio. The basic idea of

Pykhtin is to approximate the portfolio loss ~L in the multi-factor model with the

respective portfolio loss ~L in an accurately adjusted ASRF model. This is done by

281E.g. Heitfield et al. (2006) determine the sector loadings, which equal
ffiffiffiffiffiffiffiffiffiffi

rIntra
p

, for 50 industry

sectors using KMV data on asset values. The resulting intra-sector correlation is on average 18.8%

and the standard deviation is 8.3%. These inter-sectoral differences are not captured by the formula

above.
282A correlation structure with one degree of freedom for every PD/sector-combination is practi-

cally unfeasible due to high data requirements.
283In our setting, the computation time could be reduced by more than 99.8%.
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mapping the correlation structure of all credits in the multi-factor model into a

single correlation factor. This factor is determined by maximizing the correlation

between the new single risk factor ~x and the original sector factors {~xs}. Based on

this, a Taylor series expansion is performed around the constructed single-factor

model.

Concretely, the distribution of ~L, which is the loss of the accurately adjusted

single-factor model, can be calculated with the known formula of the ASRF

model:284

~L ¼ m1;c ~x
� � ¼

X

n

i¼1

wi � LGDi � F F�1ðPDiÞ � ci � ~x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

" #

; (5.9)

where ci is the correlation between the asset returns of two obligors, which is due to
the conjoint dependence to the systematic risk factor ~x. Instead of using r as an

input parameter as it is done in the ASRF model, the new correlation parameter ci is
calculated in a way that the correlation between the introduced single risk factor ~x
and the original sector factors {~xs} is maximized. Thus, most of the correlation

structure in the multi-factor model should be matched by this single factor.

As a next step, a Taylor series expansion around the comparable one-factor

model (5.9) is performed in order to reduce the approximation error. Via this

approach, it is possible to approximate the a-quantile qa ~L
� �

of the portfolio loss by

qa ~L
� � � qa

~L
� �

þ l �
dqa

~Lþ l ~Z
� �

dl

2

4

3

5

l¼0

þ l2

2
�

d2qa
~Lþ l ~Z
� �

dl2

2

4

3

5

l¼0

; (5.10)

where l is the scale of perturbation and l ~Z describes the approximation error

between “true” loss ~L and the loss in the comparable one-factor model ~L, i.e.

~L� ~L ¼: l ~Z. The first summand on the right-hand side of (5.10) is the a-quantile
of the loss ~L within the reasonably adjusted ASRF model, which is

m1;cðF�1ð1� aÞÞ.285 The required correlation factor ci is derived in Appen-

dix 5.5.1.286 In addition to maximizing the correlation between the single factor

and the sector factors, the concrete choice of ci guarantees that the first derivative in
(5.10) is equal to zero, see also Appendix 5.5.1. Hence, the so-called multi-factor

adjustment Dqa is completely described by the second derivative in (5.10). Accor-

ding to Pykhtin (2004), the multi-factor adjustment Dqa can be written as287

284The conditional PD stems from the Vasicek model, cf. Sect. 2.4 or 2.7.
285Cf. (5.9).
286For the determination of ci, we need both the intra- and inter-sector correlations, which can be

taken from Sect. 5.2.1.
287This formula has already been derived for the granularity adjustment formula, cf. (4.18).
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Dqa ¼ qa ~L
� �� qa

~L
� �

� � 1

2 � dm1;cðxÞ
	

d x
� d�2;cðxÞ

dx
� �2;cðxÞ �

d2m1;cðxÞ
	

d x2

dm1;cðxÞ
	

d x
þ x

 !" #















x¼F�1ð1�aÞ
;

(5.11)

where �m;cðxÞ :¼ �mð~Lj~x ¼ xÞ is the mth conditional moment of the portfolio loss

about the mean.

The conditional expectation m1;cðxÞ and the required derivatives are already

known from the granularity adjustment:288

m1;c xð Þ ¼
X

n

i¼1

wi � ELGDi � piðxÞ; (5.12)

dm1;c xð Þ
dx

¼
X

n

i¼1

wi � ELGDi � d piðxÞð Þ
dx

; (5.13)

d2m1;c xð Þ
dx2

¼
X

n

i¼1

wi � ELGDi � d
2 piðxÞð Þ
dx2

; (5.14)

with

pi xð Þ ¼ F
F�1 PDið Þ � ci � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

 !

; (5.15)

d pi xð Þð Þ
dx

¼ � ci
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p � ’ F�1 PDið Þ � ci � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

 !

; (5.16)

and

d2 pi xð Þð Þ
dx2

¼ � ci
2

1� ci2
� F

�1 PDið Þ � ci � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p � ’ F�1 PDið Þ � ci � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

 !

: ((5.17))

The conditional variance �2;c is

�2;c ¼ V
X

n

i¼1

wi � gLGDi � 1 ~Dif gj~x ¼ x

 !

(5.18)

288Cf. Sect. 4.2.1.2.
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but in contrast to the single risk-factor framework, the defaults are not independent

conditional on x. Thus, it is not possible to use the formula of the granularity

adjustment. The dependence structure of the conditional default events becomes

apparent if we rewrite the formula of the asset return (5.1) using (5.2) and (5.73):

~as;i ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ~xs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi

¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p �

X

K

k¼1

as;k � ~zk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi

¼ ci � ~x� ci � ~xþ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p �

X

K

k¼1

as;k � ~zk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi

¼ ci � ~x� ci �
X

K

k¼1

bk � ~zk þ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p �

X

K

k¼1

as;k � ~zk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi

¼ ci � ~xþ
X

K

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � as;k � ci � bk
� �

� ~zk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi:

(5.19)

Even if the systematic factor ~x is fixed, the asset returns are not independent of
each other but depend on the constructed sector variables ~zk.

289 The correlation

between obligor i and j conditional on ~x can be calculated as:290

rxij ¼ Corr ~as;i; ~at;jj~x
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirIntra;i � rIntra;jp �P

K

k¼1

as;k � at;k � ci � cj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2ð Þ � 1� cj2
� �

q :
(5.20)

Although the asset returns are not independent conditional on ~x, they are

independent conditional on the sector factors ~zk. We can use this property by

decomposing the conditional variance of the portfolio loss �2;cðxÞ into two terms,

�12;cðxÞ and �GA2;c ðxÞ:291

�2;cðxÞ ¼ V ~Lj~x ¼ x
� � ¼ V E ~Lj ~zkf g� �j~x ¼ x

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�1
2;c
ðxÞ

þE V ~Lj ~zkf g� �j~x ¼ x
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�GA
2;c

ðxÞ

: (5.21)

The term �12;cðxÞ describes the systematic risk adjustment, which is given by the

difference between the multi-factor and single-factor loss distribution in infinitely

289Cf. (5.2).
290See Appendix 5.5.2.
291The derivation of the variance decomposition can be found in Weiss (2005), p. 385 f.
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fine-grained portfolios. The other term �GA2;c ðxÞ is relevant for the granularity adjust-
ment, which measures the influence of portfolio name concentration. The calcula-

tion of the terms �12;cðxÞ and �GA2;c ðxÞ can be found in Appendix 5.5.3 and utilizes the
conditional independence property of the decomposed terms. This leads to

�12;cðxÞ¼
X

n

i¼1

X

n

j¼1

wiwjELGDiELGDj F2 F�1 piðxÞð Þ;F�1 pjðxÞ
� �

;rxij
� �

�piðxÞpjðxÞ
h i

;

(5.22)

�GA2;c ðxÞ¼
X

n

i¼1

wi
2 ELGDi

2 piðxÞ�F2 F�1 piðxÞð Þ;F�1 piðxÞð Þ;rxii
� �� �� þVLGDipiðxÞ

�

:

(5.23)

According to (5.11), we also need the derivative d�2;cðxÞ=dx. Thus, the deriva-
tives of the decomposed variance terms are calculated in Appendix 5.5.4, leading to

d�12;cðxÞ
dx

¼ 2 �
X

n

i¼1

X

n

j¼1

wiwjELGDiELGDj
dpiðxÞ
dx

� F
F�1 pjðxÞ

� �� rxijF
�1 piðxÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

� pjðxÞ

0

B

B

@

1

C

C

A

;

(5.24)

d�GA2;c xð Þ
dx

¼
X

n

i¼1

w2
i

dpi xð Þ
dx

� ELGD2
i 1� 2F

F�1 pi xð Þ½ � � rxiiF
�1 pi xð Þ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxii
� �2

q

0

B

@

1

C

A

2
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4

3
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5

0

B

@

þVLGDiÞ:
(5.25)

Using the terms (5.13)–(5.17), (5.20), and (5.22)–(5.25), the multi-factor adjust-

ment (5.11) can be calculated. Since the multi-factor adjustment is linear in the

conditional variance and its derivatives, we can also write the multi-factor adjust-

ment as

Dqa ¼ Dq1a þ DqGAa ; (5.26)

i.e. the multi-factor adjustment can be split into a systematic risk adjustment

component and a granularity adjustment component. To sum up, the approximation

of a loss quantile qað~LÞ in (5.10) is given by (5.9) and by the multi-factor adjustment

qa ~L
� � � qa

~L
� �

þ Dqa ¼ qa
~L
� �

þ Dq1a þ DqGAa : (5.27)
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5.2.2.2 Derivation and Implementation of the ES-Based

Multi-Factor Adjustment

After dealing with the VaR, now the ES-based multi-factor adjustment is presented.

Using the integral representation of the ES (2.20) and substituting the quantile

qað~LÞ by approximation (5.27), the ES can be written as

ESa ~L
� � ¼ 1

1� a
�
ð

1

a

qsð~LÞds

� 1

1� a
�
ð

1

a

qs
~L
� �

þ Dqs
� �

ds

¼ ESa
~L
� �

þ 1

1� a
�
ð

1

a

Dqsds ¼: ESa
~L
� �

þ DESa:

(5.28)

The first summand of the right-hand side describes the ES for the comparable

single-factor model and the second summand is the multi-factor adjustment.

The ES in the ASRF model is already known from (4.59), leading to

ESa
~L
� �

¼ 1

1� a

X

n

i¼1

wi � ELGDi � F2 �F�1ðaÞ;F�1ðPDiÞ; ci
� �

: (5.29)

In order to calculate the multi-factor adjustment in (5.28), we use the formula-

tion of Dqs from (4.18):

DESa ~L
� � ¼ � 1

2ð1� aÞ
ð

1

a

1

’ðxÞ
d

dx

’ðxÞ �2;cðxÞ
dm1;cðxÞ

	

dx

 !















x¼F�1ð1�sÞ
ds: (5.30)

Substituting x :¼ F�1ð1� sÞ and thus ds ¼ �’ðxÞdx, xðs ¼ aÞ ¼ F�1ð1� aÞ,
and xðs ¼ 1Þ ¼ �1 results in

DESa ~L
� � ¼ � 1

2ð1� aÞ
ð

F�1ð1�aÞ

�1

1

’ðxÞ
d

dx

’ðxÞ �2;cðxÞ
dm1;cðxÞ

	

dx

 !






















x¼x

’ðxÞdx

¼ � 1

2ð1� aÞ
’ðxÞ �2;cðxÞ
dm1;cðxÞ

	

dx

 !" #F�1ð1�aÞ

�1
:

(5.31)
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The derivative of m1;c can be written as dm1;cðxÞ=dx ¼ g � ’ðxÞ, with g being a

constant value. As �2;cð�1Þ ¼ 0, the right-hand side of (5.31) vanishes at

x ¼ �1, leading to

DESa ~L
� � ¼ � 1

2ð1� aÞ
’ðxÞ �2;cðxÞ
dm1;cðxÞ

	

dx
















x¼F�1ð1�aÞ
: (5.32)

This equation can easily be computed using the conditional variance and the

derivative of the conditional expectation of Sect. 5.2.2.1. Again, the multi-factor

adjustment can be decomposed into a systematic and an idiosyncratic part by

decomposing the conditional variance. Hence, the ES for a portfolio in a multi-

factor model is given by

ESa ~L
� � ¼ ESa

~L
� �

þ DES1a þ DESGAa : (5.33)

It is worth noticing that the resulting expression (5.32) is much simpler than the

corresponding formula for the VaR. The same phenomenon could already be

observed for the granularity adjustment formula in Chap. 4.

In principle, it is straightforward to implement the Pykhtin model. For calculat-

ing the ES we have to compute (5.32). The problem is that the computation can be

extremely time-consuming if the formula is applied to large portfolios. The reason

is that the calculation procedure inter alia requires n2-times the computation of the

conditional asset correlation,292 with n being the number of credits. An alternative

performed by D€ullmann and Masschelein (2007) is to neglect the multi-factor

adjustment and to use (5.9) only to aggregate all credits for each sector and thus

using the formulas on sector and not on borrower level. Of course, it may be

expected that this simplification is at the cost of lower approximation accuracy.

To consider the multi-factor adjustment, we propose to build PD-classes for each of

the sectors and aggregate the credits to these buckets for the calculation of the

multi-factor adjustment, so that the computation time is predominated by

Loops ¼ ðNPD � SÞ2; (5.34)

where NPD and S denote the number of PD-classes and sectors, respectively.293 If

the number of PD-classes is sufficient, the approximation error resulting from

aggregating individual PDs to PD-classes is negligible. As the number of loops

does not grow with bigger portfolios, it is possible to perform the adjustment on

292The quadratic computation effort is due to the determination of a double sum (see (5.22) and

(5.24)).
293The results of the multi-factor adjustment do not differ whether different exposures with the

same PD are aggregated or handled separately on borrower level. For details see Sect. 5.2.2.1 and

Appendix 5.5.1.
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bucket level within reasonable time. Only the granularity adjustment should be

calculated on borrower level but this is no computational burden.294

5.2.3 Accounting for Sector Concentrations with the Model
of Cespedes, Herrero, Kreinin and Rosen

5.2.3.1 Design of the Diversification Factor

Cespedes et al. (2006) present a method to relate the economic capital in the multi-

factor model to the regulatory capital formula.295 These models are linked via a

diversification factor DFð�Þ, which depends on two parameters:

l The average sector concentration HHI and
l The average weighted inter-sector correlation b

Herewith, the economic capital of a portfolio can be approximated as:

ECmf � DF HHI; b
� � � RC: (5.35)

Thus, the economic capital in the multi-factor model ECmf can be approximated

by a well-defined diversification factor DF multiplied with the regulatory capital

requirement of the ASRF model RC. As mentioned before, Cespedes et al. (2006)

assume in their calculations the regulatory capital of Pillar 1 to be an upper barrier

of the true risk because no diversification effects between the sectors are con-

sidered, which in turn implies the parameter DF to be always less than or equal to

one. In contrast, if we use our definition of the intra-sector correlation rIntra from
Sect. 5.2.1, it is possible to obtain ECmf>RC as well as ECmf<RC depending on the

degree of diversification in comparison to the well-diversified portfolio defined in

Sect. 5.2.1. Hence, our later on calculated DF-function can be greater than one,

i.e. the DF-function measures not only the benefit from sector diversification but

also the risk resulting from high sector concentration. As the regulatory capital is

additive in the ASRF model, (5.35) can be substituted by

ECmf � DF �
X

S

s¼1

RCs; (5.36)

in which ECmf is the economic capital in the multi-factor model and RCs is the

regulatory capital for sector s. In principle, the approach can be characterized as

294The computation time when calculating the multi-factor adjustment on bucket- instead on

borrower-level can be reduced from 67 min to 5 s for a portfolio with 11 sectors, 7 PD-classes,

and 5,000 creditors.
295In the strict sense, Cespedes et al. (2006) relate the multi-factor model to the economic capital in
a single-factor model. But since they apply the regulatory capital formula and we require a relation

to this formula, too, we use the term regulatory capital instead.

5.2 Incorporation of Sector Concentrations Using Multi-Factor Models 197



follows: Firstly, ECmf is calculated for a multitude of portfolios via Monte Carlo

simulations. For each simulated portfolio, the diversification factor can be calcu-

lated according to (5.36). Finally, a regression is performed to get an approximation

for DF as a function of the two parameters HHI and b. If DF can capture the

industry diversification effects, we are able to approximate ECmf with (5.36)

without additional Monte Carlo simulations.

To derive the parameters which explain the effect of diversification and concen-

tration in a multi-factor model, Cespedes et al. (2006) suggest to use the average

inter-sector correlation b. This can be interpreted as a scale of the dependence

between the sectors. The formula for b is given as

b ¼

P

S

s¼1

P

t6¼s

rInters;t � RCs � RCt

P

S

s¼1

P

t 6¼s

RCs � RCt

; (5.37)

The correlation is weighted by the regulatory capital in order to account for the

contribution of each sector. As a consequence, the correlation between sectors with

a high capital requirement account for a high degree of the average correlation.296

The second suggested parameter is a parameter for the degree of capital diversi-

fication, measured by the Herfindahl–Hirschmann Index HHI.297 It describes the

sector concentration measured by the relative weight of each sectors regulatory

capital RCs:298

HHI ¼
P

S

s¼1

RCsð Þ2

P

S

s¼1

RCs

� �2
: (5.38)

As mentioned in Sect. 3.4, the parameter HHI lies between two extreme values:

l HHI ¼ 1=S, i.e. perfect sector diversification,
l HHI ¼ 1, i.e. perfect sector concentration.

To avoid a too complex model, Cespedes et al. (2006) neglect further potential

input parameters to determine the DF-function. To approximate the multi-factor

model, (5.36) can be rewritten as

ECmf � DF HHI; b
� � �

X

S

s¼1

RCs: (5.39)

296The idea is related to Pykhtin (2004), who uses the VaR from the ASRF model as a weight when

maximizing the correlation between the single factor of the comparable one-factor model and the

sector factors; cf. (5.82)–(5.85).
297Cespedes et al. (2006) call this parameter the capital diversification index (CDI).
298This concentration measure corresponds to (2.87).
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5.2.3.2 Computation of the Diversification Factor by Simulation

In the following, our procedure to estimate the DF-function is presented. In order to
get a universally valid DF-factor, as many portfolios as possible have to be

generated and simulated. To reduce the necessary number of trials, the portfolios

should be restricted to those with reasonable characteristics. Our portfolios are

randomly generated using the following parameter setting. When we state several

parameter values or a parameter range, the parameter is randomly drawn from

this set.

For the intra-sector correlations, we use the functional form of (5.8). The inter-

sector correlation structure is taken from Table 5.1, so that all simulated portfolios

are stemming from this sector definition. Each portfolio consists of {2, . . ., 11}
sectors that are randomly drawn from the different industries. The sector weights

are in [0, 1] and sum up to one. The total number of credits is 5,000, equally divided

for each sector. Each sector in turn consists of credits from the PD classes {AAA,

AA, A, BBB, BB, B, CCC}. Instead of using equally distributed PD classes, we

draw the quality distribution from our predefined credit portfolio qualities {very

high, high, average, low, very low} for every sector from Fig. 4.7.299 We draw

25,000 or 50,000 portfolios and compute the economic capital in the multi-factor

model for each portfolio.

To determine the economic capital, we have tried both Monte Carlo simulations

with 100,000 trials300 for every portfolio and the Pykhtin formula from Sect. 5.2.2.

Because the computation time for Monte Carlo simulations is materially longer, the

corresponding results are based on 25,000 random portfolios, whereas we computed

the economic capital for 50,000 portfolios when using the Pykhtin formula instead.

Furthermore, since Cespedes et al. (2006) use the VaR as the relevant risk measure

and thus define the economic capital as ECmf :¼ VaRmf
0:999 � EL, we have to redefine

the economic capital of the multi-factor model with respect to ES as argued in

Sect. 4.3.1: ECmf :¼ ESmf
0:9972 � EL.301 In contrast, for the regulatory capital we use

RC ¼ VaRðBaselÞ � EL. The result could also be related to the Expected Shortfall in

the ASRF model but we have detected that the results differ only marginally and the

VaR is easier to implement in typical spreadsheet applications.302 The results for the

diversification factor DF are very similar regardless of whether they are based on

299The setting is similar to Cespedes et al. (2006). Until this point, the main difference is the

definition of the intra- and inter-sector correlations.
300For the determination of the economic capital for one specific portfolio, the number of trials is

slightly low but as we perform 25,000 simulations and the simulation noise of each simulation is

unsystematic, the error terms should cancel out each other to a large extent.
301We have also tested the results when using the ES instead of the unexpected loss but the

coefficient of determination is higher when subtracting the EL in the corresponding formulas when

performing the simulations.
302To determine the Expected Shortfall with (4.59), a bivariate cumulative normal distribution has

to be computed whereas the Value at Risk only makes use of univariate distributions.
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Monte Carlo simulations or on the Pykhtin formula. Fig. 5.1 presents characteristics

of the diversification factor when using the Pykhtin formula.

For a determination of the functional form of DF, we use a regression of the

type303

DF ¼ a0 þ a1 � 1� HHIð Þ � 1� b
� �

þ a2 � 1� HHIð Þ2 � 1� b
� �þ a3 � 1� HHIð Þ � 1� b

� �2 (5.40)

in both cases, using the ordinary least squares (OLS) technique. The resulting

function when using Monte Carlo simulations is

DFMC ¼ 1:4626� 1:4475 � 1� HHIð Þ � 1� b
� �

� 0:0382 � 1� HHIð Þ2 � 1� b
� �þ 0:3289 � 1� HHIð Þ � 1� b

� �2

(5.41)
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Fig. 5.1 Diversification Factor realizations on the basis of 50,000 simulations

303We have tried several different regressions but similar to Cespedes et al. (2006), this function

worked best. In contrast to Cespedes et al. (2006) we do not set the first parameter a0 to one

because our DF-factor is not bounded by the single-factor model.
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with R2 ¼ 95.5%. Analogously, we determined the DF-function when using the

Pykhtin formula

DFPykhtin ¼ 1:4598� 1:4168 � 1� HHIð Þ � 1� b
� �

� 0:0213 � 1� HHIð Þ2 � 1� b
� �þ 0:2421 � 1� HHIð Þ � 1� b

� �2

(5.42)

with a coefficient of determination of R2 ¼ 97.9%. The latter function is plotted in

Fig. 5.2.304 To finally get the approximation for the multi-factor model, (5.39) has

to be computed using either function (5.41) or (5.42).

It can be seen that the maximum diversification factor is about 1.46. Thus, in the

case of (almost) no diversification effects, the measured capital requirement is 46%

above the regulatory capital under Pillar 1. This will appear in the case of being

concentrated to a single sector, leading toHHI ¼ 1, as well as in the theoretical case
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Fig. 5.2 Surface plot of the DF-function

304The shape of the function is similar to Cespedes et al. (2006) but their range is from 0.1 to 1.0

whereas our function ranges from 0.2 to 1.5. In addition, they received a little higher R2 (99.4%

instead of 95.5% or 97.9%) but this is mainly due to the different simulation setting. Cespedes

et al. (2006) directly draw the parameter b as an input parameter for each simulation, implying b to

fully define their correlation structure. We use a heterogeneous correlation structure instead and

compute b for the portfolios. Thus, in our setting b does not reflect the complete correlation

structure, which results in a lower R2 but does not imply a worse approximation.
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of perfect correlations between the relevant sectors, leading to b ¼ 1. Furthermore,

the diversification factor is strongly increasing in HHI and in b, which is consistent
with the intuition.

5.2.4 Accounting for Sector Concentrations with the Model
of D€ullmann

5.2.4.1 The Binomial Expansion Technique

The model of D€ullmann (2006) is a combination of the Binomial Expansion

Technique (BET)-model and the Infection Model of Davis and Lo (2001). For

this reason, at first, the BET-model and the infection model will be explained,

before the model of D€ullmann will be presented and applied to our multi-factor

setting. During the application, we will deviate from the original procedure in order

to apply the ES instead of the VaR and to accelerate the computation time signifi-

cantly for large portfolios.305

The Binomial Expansion Technique (BET) was developed by Moody’s for the

rating of CDOs but it can also be applied to standard credit portfolios without

tranches. The BET-model approximates the loss distribution of the portfolio but is

much less computationally intensive than Monte Carlo simulations.306 The main

idea is to perform a mapping of the original portfolio into a hypothetical homo-

geneous portfolio with stochastically independent, Bernoulli distributed loss events

leading to a binomial distributed number of losses. The hypothetical portfolio can

be described by the average probability of default p, the number of credits D, which
is called the modified Diversity Score, and the (constant) Loss Given Default LGD.
The parameters D and p are calibrated in a way that the first two moments of the

original and the hypothetical portfolio loss distribution are identical. This shall lead

to a similar overall loss distribution of both portfolios.

With ns for the number of credits in sector s, the loss of the original portfolio

equals

~Lorig ¼
X

S

s¼1

X

ns

i¼1

ws;i � LGD � 1 ~Ds;if g; (5.43)

whereas the loss of the hypothetical portfolio is

~Lhyp ¼
X

D

i¼1

w � LGD � 1 ~Dif g ¼
X

D

i¼1

1

D
� LGD � 1 ~Dif g: (5.44)

305In comparison to the original procedure, the computation time could be reduced by almost

99.9% in our calculations.
306Cf. Cifuentes et al. (1996), Cifuentes and O’Connor (1996), and Cifuentes and Wilcox (1998).
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Matching the expectation for both portfolios leads to307

p :¼ E 1 ~Dif g
� �

¼
X

S

s¼1

X

ns

i¼1

ws;i � PDs;i (5.45)

and matching the variance results in308

D¼ p � 1�pð Þ
P

S

s¼1

P

S

t¼1

P

ns

i¼1

P

nt

j¼1

ws;i �wt;j �Corr 1 ~Ds;if g;1 ~Dt;jf g
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PDs;i 1�PDs;i

� �

PDt;j 1�PDt;j

� �

q

:

(5.46)

The pairwise default correlation and the asset correlation between borrower i in
sector s and borrower j in sector t can be transformed into each other with309

Corr 1 ~Ds;if g; 1 ~Dt; jf g
� �

¼ F2 F�1 PDið Þ;F�1 PDj

� �

;Corr ~as;i; ~at; j
� �� �� PDi � PDj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PDs;i 1� PDs;i

� �

PDt; j 1� PDt; j

� �

q :

(5.47)

In the original model, it is assumed that the correlation between every two

borrowers, which are in the same sector, is identical. Furthermore, it is assumed

that the correlation between two borrowers in distinct sectors is always identical

and the PDs inside a sector are homogeneous. These assumptions would lead to

some simplifications in (5.45)–(5.47), but they are not necessary for the calculation

of the loss distribution. Thus, we can also use the correlation structure from (5.4)

and use (5.45)–(5.47). Having determined the parameters p and D, we can calculate
the loss distribution for the hypothetical portfolio. Since the (uncertain) number of

defaults ~k in the hypothetical portfolio is binomially distributed

~k ¼
X

D

i¼1

1 ~Dif g � B D; pð Þ; (5.48)

the probability of having k defaults is

Pk ¼ P ~k ¼ k
� � ¼ P

X

D

i¼1

1 ~Dif g ¼ k

 !

¼ D
k

� �

� pð Þk � 1� pð ÞD�k: (5.49)

307See Appendix 5.5.5.
308See Appendix 5.5.5.
309See Appendix 5.5.6.
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The corresponding cumulative distribution function for the number of defaults is

FkðxÞ ¼ P ~k � x
� � ¼ P

X

D

i¼1

1 ~Dif g � x

 !

¼
X

x

k¼0

Pk: (5.50)

Thus, the loss distribution of the original portfolio can be approximated with

F
ðnÞ
origðlÞ � F

ðDÞ
hypðlÞ ¼ P

X

D

i¼1

1

D
� LGD � 1 ~Dif g � l

 !

¼ P
X

n

i¼1

1 ~Dif g � l � D
LGD

 !

¼
X

l�D=LGDb c

k¼0

Pk;

(5.51)

leading to a VaR of

VaRa ~L
orig

� �

� VaRa ~L
hyp

� �

¼ 1

D
� LGD � F�1

k að Þ; (5.52)

where F�1
k að Þ is the inverse CDF of the binomial distribution with parametersD and

p from (5.48). The ES can be computed using the definition of the ES (2.19). From

(5.48) and (5.52) it can best be seen that the interaction between the credits is

incorporated by reducing the real number of credits to the hypothetical number, the

Diversity Score, with higher exposure weights. E.g., for D ¼ n=2, each (stochasti-

cally independent) default in the hypothetical portfolio is equivalent to two defaults

in the original portfolio, which leads to some kind of default interaction in the

original portfolio.

5.2.4.2 The Infectious Defaults Model

Davis and Lo (2001) present an alternative to the BET-model for the determination

of the loss distribution of a credit portfolio which is assumed to be homogeneous.310

In the model, credits can default not only directly but they can also be “infected” by
other credits leading to an indirect default. Similar to the BET-model, the direct

defaults are assumed to be stochastically independent, leading to a binomial

distribution of direct defaults. Thus, the task is how the indirect defaults can be

incorporated into the loss distribution. To begin with, several indicator variables

are introduced, which indicate the type of default and the interaction. Whether a

credit defaults or not is expressed by the indicator variable ~Zi, which equals one in

the event of default and zero otherwise. Thus, the total number of defaults in the

portfolios is

~k ¼ ~Z1 þ ~Z2 þ � � � þ ~Zn: (5.53)

310Similar to the BET-model, the authors developed their model for CDOs but it can also be

applied to standard credit portfolios.
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If credit i defaults directly, the indicator variable ~Xi takes the value one.

Furthermore, the indicator variable ~Yj;i indicates whether credit j could potentially
infect credit i. The condition for this infection is that both the infection variable ~Yj;i
and the direct default indicator ~Xj of credit j take the value one. This leads to the

following function for the default indicator ~Zi:

~Zi ¼ ~Xi þ 1� ~Xi

� � � 1�
Y

j6¼i

1� ~Xj � ~Yj;i

� �

 !

;with i ¼ 1; :::; n and j ¼ 1; :::; n:

(5.54)

In (5.54), the second term is only relevant if credit i does not default directly. In
this case, an infection through any one or several credits leads to a product of zero

so that the second term equals one. The equation will be demonstrated further with

the following examples for a portfolio consisting of four credits:

l Credit 1 defaults directly:

Z1 ¼ X1 þ 1� X1ð Þ � 1�
Y

j 6¼i

1� Xj � Yj;i
� �

 !

¼ 1þ 1� 1ð Þ � 1�
Y

j6¼i

1� Xj � Yj;i
� �

 !

¼ 1:

As the term ð1� X1Þ equals zero, the last expression vanishes and Credit 1

defaults directly without an effect of defaults of the other credits.

l Credit 2 defaults as a consequence of infection from the defaulted credit 1:

Z2 ¼ X2 þ 1� X2ð Þ � 1� 1� X1 � Y1;2
� � � 1� X3 � Y3;2

� � � 1� X4 � Y4;2
� �� �

¼ 0þ 1� 0ð Þ � 1� 1� 1 � 1ð Þ � 1� 0 � 1ð Þ � 1� 1 � 0ð Þð Þ ¼ 1:

The non-defaulting Credit 3 would also have the potential to infect Credit 2 in

the case of a default. Credit 4 defaults but does not infect credit 2.

l Credit 3 does not default:

Z3 ¼ X3 þ 1� X3ð Þ � 1� 1� X1 � Y1;3
� � � 1� X2 � Y2;3

� � � 1� X4 � Y4;3
� �� �

¼ 0þ 1� 0ð Þ � 1� 1� 1 � 0ð Þ � 1� 0 � 0ð Þ � 1� 1 � 0ð Þð Þ ¼ 1:

The third credit does neither default directly nor indirectly.

In a probabilistic setting, a direct default is assumed to happen with probability p:

P ~Xi ¼ 1
� � ¼ p 8i: (5.55)

Similar, the infection indicator ~Yj;i takes the value one with probability q:

P ~Yj; i ¼ 1
� � ¼ q 8i; j: (5.56)
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Thus, the dependence structure is assumed to be perfectly homogeneous. Let i be
the number of direct defaults, k–i the number of indirect defaults, so that we have in

total k defaults, and the other n–k credits do not default. The probability of

observing k defaults out of n credits is

Pk ¼
n

k

� �

�
X

k

i¼1

k

i

� �

� pi
|{z}

i direct defaults

� 1� pð Þ � 1� 1� qð Þi
� �h ik�i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k�i indirect defaults

� 1� pð Þ � 1� qð Þi
h in�k

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n�k survivors

:

(5.57)

The probability Pk can be split into four parts:

(a) If we ignore the perturbations, the probability of i direct defaults is pi.
(b) A number of k–i indirect defaults occurs if these credits do not default directly,

which has the probability ð1� pÞk�i
, but these are infected by any of the i

directly defaulted credits with probability ð1� ð1� qÞiÞk�i
.

(c) For a survival of n–k credits, these credits default neither directly, which has a

probability of ð1� pÞn�k
, nor any of the i directly defaulted credits leads to an

indirect default, which can be expressed as ðð1� qÞiÞn�k
.

(d) There are several possible perturbations of defaulted credits. Firstly, there are

n
k

� �

perturbations for k out of n defaults. Furthermore, there are several

combinations of direct and indirect defaults. A number of k defaults can consist
of ð1; k � 1Þ; ð2; k � 2Þ; :::; ðk; 0Þ direct and indirect defaults. For each of

these combinations, there exist
k
i

� �

perturbations. All of the corresponding

probabilities have to be summed up to cover all combinations for k defaults.

Expression (5.57) could also be written as

Pk ¼
n

k

� �

�
X

k

i¼1

k

i

� �

� pi � 1� pð Þn�i � 1� 1� qð Þi
� �k�i

� 1� qð Þi n�kð Þ

¼ n

k

� �

�
X

k�1

i¼1

k

i

� �

� pi � 1� pð Þn�i � 1� 1� qð Þi
� �k�i

� 1� qð Þi n�kð Þ

þ n

k

� �

� k

k

� �

� pk � 1� pð Þn�k � 1� 1� qð Þk
� �0

� 1� qð Þk n�kð Þ

¼ n

k

� �

� pk � 1� pð Þn�k � 1� qð Þk n�kð Þ
h

þ
X

k�1

i¼1

k

i

� �

� pi � 1� pð Þn�i � 1� 1� qð Þi
� �k�i

� 1� qð Þi n�kð Þ
#

;

(5.58)
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which corresponds to the original formula of Davis and Lo (2001). Thus, with the

Infectious Defaults Model (IDM), we obtain the following distribution of defaults:

FIDMðxÞ ¼
X

x

k¼0

Pk; (5.59)

or, in analogy to (5.51), we obtain the loss distribution

FIDMðlÞ ¼
X

l�n=LGDb c

k¼0

Pk: (5.60)

The VaR can be calculated as

VaRIDM
a

~L
� � ¼ FIDM

a

� ��1ðlÞ ¼ 1

n
� LGD � FIDM

a

� ��1ðxÞ; (5.61)

and the ES can be computed using the definition of the ES (2.19).

The main problem for an application of (5.60) is to determine the probability of a

direct default p and the infection probability q. Usually, statistical models only

provide the (combined) probability of default PD without separating these types of

defaults. Thus, if the infection probability q could be determined exogenously, it is

plausible to demand that the probability p shall be consistent with the estimation of

PD with respect to the expected number of defaults:311

E
X

n

i¼1

1 ~Dif g
 !

¼ n � 1� 1� pð Þ � 1� p � qð Þn�1
� �

¼! n � PD: (5.62)

Consequently, the remaining task is to find a method to estimate q from histori-

cal or market data. Unfortunately, this problem could not be solved by Davis and Lo

(2001). Thus, for the time being it seems necessary to rely on the opinion of experts

which infection probabilities seem to be reasonable for a specific portfolio or sector.

5.2.4.3 Integrating Infectious Defaults into the BET-Model

Setup of the Model

As demonstrated by D€ullmann (2006), the BET-model can significantly under-

estimate the VaR if the asset returns of the credits are positively correlated. Thus,

the BET-model seems not suitable for measuring concentration risk, which

is usually characterized by a high degree of default interaction. Against this

background, D€ullmann (2006) combines the infection model of Davis and Lo

311The expected number of defaults in the infectious defaults model is determined in

Appendix 5.5.7.
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(2001), which explicitly considers default interaction, with the BET-model. For this

purpose, at first a heterogeneous portfolio is mapped into a comparable homoge-

neous portfolio as in the BET-model. Thus, the average probability of default p as

well as the Diversity Score D are calculated according to (5.45) and (5.46). Using

this hypothetical portfolio consisting of D credits, the default distribution is calcu-

lated on the basis of the infectious defaults model, leading to the following

expression for the VaR in the infection model (IM) of D€ullmann:312

VaRIM
a

~L
� � ¼ 1

D
� LGD � FIDM

a

� ��1ðxÞ; (5.63)

with the distribution function FIDM
a of the infectious defaults model from (5.59). At

this point, the probabilities of a direct default p and indirect default q are still

required as additional input parameters. Similar to the suggestion of Davis and Lo

(2001) to choose the parameter p for a given parameter q in a way that the expected
loss is correct, D€ullmann (2006) proposes to choose the parameters in a way that the

VaR is identical to the “true” VaR of a multi-factor model. For this purpose, he

determines the VaR at confidence level 0.999 with Monte Carlo simulations and

chooses the parameter q for a given parameter p that solves the following equation:

VaRIM
0:999

~L
� �¼! VaRMC

0:999
~L
� �

: (5.64)

In principle, it is possible not only to match the VaR but also to match the EL. In

this case, both parameters p and qwould be a result of these two conditions. Instead,
D€ullmann (2006) uses only condition (5.64) and uses the value of the averaged PD

for the parameter p. Since the direct defaults should actually be only a part of the

total number of defaults, the expectation of the loss distribution is too high when

using this approach. However, if only the VaR is of interest, this procedure should

be sufficient.313

The next steps are very similar to the procedure of Cespedes et al. (2006). At

first, the VaR is computed for a multitude of portfolios and the corresponding

infection probabilities q are determined. Then, the infection probability is explained

by several portfolio variables with a linear regression. For this purpose, D€ullmann

(2006) chooses the following regression model:

lnðqÞ¼ a0þa1 � ln HHIð Þþa2 � ln pð Þþa3 � ln rIntrað Þþa4 � ln rInterð Þþ e; (5.65)

where the explanatory variables shall explain most of the dependence structure. The

Herfindahl–Hirschmann index HHI is calculated as the sum of squared relative

exposure shares of the sectors in the portfolio, which is similar to the definition used

by Cespedes et al., who rely on the share of regulatory Pillar 1 capital instead of the

312Cf. (5.61) for the corresponding expression without using the parameters of the BET-model.
313D€ullmann (2006) mentions that the simultaneous computation of both parameters leads to

numerical problems. For this reason, the discrepancy in the EL is accepted. Cf. D€ullmann

(2006), p. 10.
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share of exposure. The average probability of default p is calculated with (5.45).

The variables rIntra and rInter are the average intra- and inter-sector correlations,

which are weighted by the total exposure amounts of the corresponding sectors.

Thus, the calculation is similar to the average weighted inter-sector correlation b
from (5.37), except for the weighting with the total exposure instead of the

regulatory capital under Pillar 1. In this context, it is important to notice that

D€ullmann (2006) uses a definition of the sector correlations that is slightly different

from the definition used in the preceding sections. While we use the term inter-

sector correlation for the correlation between the sector factors, D€ullmann (2006)

uses this expression for the correlation between the asset returns of two borrowers,

which belong to different sectors, leading to

Corr ~as;i; ~at;j
� � ¼

1 if s ¼ t and i ¼ j;

rIntra if s ¼ t and i 6¼ j;

rInter if s 6¼ t;

8

>

<

>

:

(5.66)

which already takes into account that the correlation parameters are assumed to be

homogeneous. Thus, the relation between “our” intra- and inter-sector correlation

rIntra and rInter and “D€ullmann’s” correlation parameters rIntra and rInter is

rIntra ¼ rIntra and rInter ¼ rIntra � rInter (5.67)

in a homogeneous setting.314 The coefficients a0; :::; a4 of regression model (5.65)

are estimated using the ordinary least squares (OLS) technique. Finally, after

application of the resulting regression function, the VaR can be approximated for

any credit portfolio by computation of (5.63).

Calibration and Implementation of the Model

For the calibration of the model, several portfolios are constructed which differ in

the degree of concentration, the PDs, and the correlation coefficients.315 It is

assumed that the portfolio consists of 2,000 credits with identical exposure size.

In the first of four portfolio types there are only three different sectors with a

sectoral exposure weight of 50%, 30%, and 20%. This leads to a HHI of 38%. The

second portfolio is constructed from the first one by splitting each sector into two

new sectors, where the first one has a share of 2/3 and the second one of 1/3. The

same procedure is repeated for the third and the fourth portfolio type, so that the last

portfolio consists of 3 � 23 ¼ 24 sectors and contains the smallest sector concentra-

tion with a HHI of 6.5%. In addition to this variation, the probability of default is

314See also definition (5.4) of Sect. 5.2.1.
315The portfolios used for calibration correspond to the setting of D€ullmann (2006).
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varied between 0.03% and 5%, the correlation parameter rIntra between 5% and

40%, and the correlation parameter rInter between 2.5% and 15%.316 These para-

meters are identical for every credit of a specific portfolio. Thus, for each of the four

mentioned portfolio types the parameter combinations shown in Table 5.4 are

applied, leading to 360 portfolios in total.

Consistent with the preceding sections, we implement the ES instead of the VaR.

Thus, for each of these portfolios, the ES is computed on the basis of a standard

Monte Carlo simulation. Within the calculation of ES in the infection model, the

value of the averaged PD is used for the parameter p as noticed before. Then, the

infection probability q is determined, which leads to a match between the ES of

the infection model and the Monte Carlo simulation:

ESIM0:999
~L
� �¼! ESMC

0:999
~L
� �

: (5.68)

When determining the ES in the infection model, we have to calculate the

inverse CDF ðFIDM
a Þ�1

with (5.59) and the Diversity Score D with (5.46), which

requires the default correlation of (5.47). The computation of D can be quite time-

consuming but the calculation can be accelerated significantly. Looking at the

Diversity Score

D¼ p � 1�pð Þ
P

S

s¼1

P

S

t¼1

P

ns

i¼1

P

nt

j¼1

ws;i �wt;j �Corr 1 ~Ds;if g;1 ~Dt;jf g
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PDs;i 1�PDs;i

� �

PDt;j 1�PDt;j

� �

q

;

(5.69)

we find that the calculation requires n2-times the calculation of the denominator,

with
PS

s¼1 ns ¼ n for the total number of credits, and especially n2-times the

calculation of the default correlation.317 Similar to the computation of the multi-

factor adjustment from Sect. 5.2.2.2, building PD-classes for each sector can reduce

the calculation time notably. With NPD for the number of PD-classes, we can build

S � NPD ¼: B different buckets with a number of nu credits in each bucket u

Table 5.4 Parameter

combinations for the

calibration of the model

PD (%) �rIntra(%) �rInter(%)

0.03 5.0 2.5

0.20 10.0 2.5 5.0

0.50 15.0 2.5 5.0 7.5

1.00 20.0 5.0 7.5 10.0

2.00 30.0 5.0 10.0 15.0

5.00 40.0 5.0 10.0 15.0

316Due to the characteristic of the correlation parameter (5.67), the parameter rInter is always

smaller than the parameter rIntra.
317See (5.47).
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ðPB
u¼1 nu ¼ nÞ. Thus, a bucket u corresponds to all credits in a specific com-

bination of a sector and a PD-class. Using this notation, the denominator of D can

be written as

p � 1� pð Þ
D

¼
X

S

s¼1

X

S

t¼1

X

ns

i¼1

X

nt

j¼1

ws;i �wt;j �Corr 1 ~Ds;if g;1 ~Dt;jf g
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PDs;i 1�PDs;i

� �

PDt;j 1�PDt;j

� �

q

¼
X

B

u¼1

X

B

v¼1

wu �wv �Corr 1 ~Duf g;1 ~Dvf g
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PDu 1�PDuð ÞPDv 1�PDvð Þ
p

þ
X

B

u¼1

X

nB

i¼1

wu;i
2 � 1�Corr 1 ~Duf g;1 ~Duf g

� �� �

�PDu � 1�PDuð Þ:

(5.70)

The first term of the resulting expression utilizes that the default correlation

between creditors and the PDs are identical within each bucket. Therefore, we can

sum up the corresponding terms. However, this term neglects that the asset correla-

tion Corr(~as;i; ~as;iÞ of a credit with itself equals one. Instead, these elements are

treated as if the correlation was Corr(~as;i; ~as;iÞ � rIntra, which is only true for i 6¼ j.
Thus, we have to exchange the corresponding default correlations and set the

correlation to one. This is done in the second fraction. Obviously, the computation

time of (5.70) is now predominated by:318

Loops ¼ B2 ¼ NPD � Sð Þ2: (5.71)

Corresponding to the finding for the Pykhtin model, the number of loops does

not grow with bigger portfolios. Thus, it is possible to compute the formula on

bucket level within reasonable time.319

Using these terms, we determine the required infection probability q. As a next
step, for all 360 portfolios the explanatory variables of the regression model (5.65)

are calculated and the OLS-regression is performed. This leads to the following

estimation function for q:

lnðqÞ ¼ 0:8467þ 0:5017 � ln HHIð Þ þ 0:4726 � ln pð Þ
þ1:0849 � ln rIntrað Þ þ 0:6782 � ln rInterð Þ; (5.72)

318For the second fraction, a number of n elements has to be computed. Depending on the number

of buckets or credits, the computation time can be longer than for the first term, but due to the

linearity this term is virtually unproblematic.
319The computation time when calculating the infection model on bucket- instead on borrower-

level can be reduced from 12 min to less than 1 s for a portfolio with 11 sectors, 7 PD-classes, and

5,000 creditors.
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with a coefficient of determination of R2¼ 96.7%. Using this formula, the infection

probability and herewith the ES of every credit portfolio can be approximated very

fast. If the portfolio is heterogeneous, the input parameters p, rIntra, and rInter are the
weighted averages instead of the individual parameters as described in the previous

section. The performance of this model as well as the performance of the models

presented in Sects. 5.2.2 and 5.2.3 will be analyzed subsequently.

5.3 Performance of Multi-Factor Models

5.3.1 Analysis for Deterministic Portfolios

To determine the quality of the presented models, we start our analysis with

calculating the risk for five deterministic portfolios of different quality.320 We

generate well-diversified portfolios consisting of 5,000 credits. Consequently, we

have neither high name nor high sector concentration risk. For this, we choose the

sectors and their weights as given in Table 5.2. The inter-sector correlation is given

in Table 5.1 whereas the intra-sector correlation is calculated on the basis of (5.8).

The five portfolios differ in their PD distribution which is presented in Fig. 4.7.

Portfolio 1 is the portfolio with the highest and Portfolio 5 is the one with the lowest

credit quality distribution.

In Table 5.5, we compare the results from the Monte Carlo simulations

(MC-Sim.), the Basel II formula (Basel II), the multi-factor adjustment of Pykhtin

(Pykhtin), the formula that is based on Cespedes et al. (2006) if Monte Carlo

simulations are used for calibration (CHKR I) or if the Pykhtin formula is used

for the calibration (CHKR II), and the infection model of D€ullmann (D€ullmann).

The results from the Monte Carlo simulations using the risk measure ES serve as the

benchmark for the other models.

As can be seen in the table, the benchmark portfolio is constructed in a way

that the Basel II formula represents a very good approximation321 of the “real” ES

in a multi-factor model given by Monte Carlo simulations.322 Besides, the

simulated VaRmf matches the simulated ESmf, our benchmark, almost exactly.

The calculated values of the Pykhtin model are very good approximations of the

ES in almost all cases, too. The outcomes of the CHKR model are somewhat more

imprecise in both cases. With better credit quality, the estimation error is

320The results refer to the total gross loss of a portfolio in terms of ES or VaR. To relate this to the

unexpected net loss, the results have to be multiplied by the LGD and the EL has to be subtracted.
321The small mismatch is mainly due to keeping the ES-confidence level constant and not a result

of the chosen intra-sector correlation function. If we directly compare the results from Monte

Carlo simulations with the ES in the ASRF framework, the relative root mean squared error is

reduced from 0.97% to 0.28%.
322In our analyses, the number of simulation runs is 500,000.
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increasing, which leads to an underestimation of risk in high quality portfolios.

However, the infection model of D€ullmann shows a rather poor performance for all

benchmark portfolios and overestimates the true ES significantly.

As a next step, we change the portfolio structure towards high sector concentra-

tion. For this purpose, we increase the sector weights of two sectors. We assume

that 45% of the creditors – in terms of their exposure – belong to the Information

Technology sector and an equal amount belongs to the Telecommunication

Services sector. The remaining 10% of exposure are equally assigned to the

miscellaneous sectors. As shown in Table 5.6, the risk materially increases for

all types of portfolio quality. Again, the simulated values for ESmf and VaRmf are

very close to each other. However, the Basel formula underestimates the risk by

14–20%, depending on the portfolio quality. This is the (relative) amount that

should be considered in the assessment of capital adequacy under Pillar 2. The

approximation formula of Pykhtin can capture this concentration risk with a

negligible error in all cases. CHKR I leads to an underestimation of risk in high

quality portfolios and to an overestimation of risk in low quality portfolios with a

maximum deviation of nearly 4%. By contrast, in most cases the model CHKR II

underestimates the risk with at maximum 6%. Thus, the sector concentration risk is

not fully captured for high quality portfolios. The model of D€ullmann fails to

approximate the true risk and leads to a material overestimation of risk.

Furthermore, we built credit portfolios with low sector concentration. For this

purpose, we use the concept of naı̈ve diversification, implying each sector to have

an equal weight of 1/11. As can be seen in Table 5.7, the economic capital is

significantly lower than the regulatory capital. Moreover, this shows that it is easy

Table 5.5 Comparison of the models for the five benchmark portfolios with absolute error in

basis points (bp) and relative error in percent (%)

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

MC-Sim. ES (%) 6.23 7.68 12.95 20.88 23.15

VaR (%) 6.18 7.62 12.94 20.93 23.30

Absolute error (bp) �5 �6 �1 5 15

Relative error (%) �0.80 �0.78 0.08 0.24 0.65

Basel II VaR (%) 6.12 7.59 12.95 20.89 23.26

Absolute error (bp) �11 �9 0 1 11

Relative error (%) �1.77 �1.17 0.00 0.05 0.48

Pykhtin ES (%) 6.21 7.66 12.91 20.80 23.20

Absolute error (bp) �2 �2 �4 �8 5

Relative error (%) �0.32 �0.26 �0.31 �0.38 0.22

CHKR I ES (%) 6.07 7.51 12.70 20.43 22.79

Absolute error (bp) �16 �17 �25 �45 �36

Relative error (%) �2.57 �2.21 �1.93 �2.16 �1.56

CHKR II ES (%) 6.00 7.45 12.68 20.48 22.87

Absolute error (bp) �23 �23 �27 �40 �28

Relative error (%) �3.69 �2.99 �2.08 �1.92 �1.21

D€ullmann ES (%) 6.86 8.87 15.42 23.29 25.95

Absolute error (bp) 63 119 247 241 280

Relative error (%) 10.19 15.49 19.06 11.54 12.07
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Table 5.7 Comparison of the models for five low concentrated portfolios with absolute error in

basis points (bp) and relative error in percent (%)

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

MC-Sim. ES (%) 5.66 6.98 12.16 19.78 22.06

VaR (%) 5.64 6.94 12.17 19.81 22.10

Absolute error (bp) �2 –4 1 3 4

Relative error (%) –0.35 –0.57 0.08 0.15 0.18

Basel II VaR (%) 6.12 7.59 12.95 20.89 23.26

Absolute error (bp) 46 61 79 111 120

Relative error (%) 8.13 8.74 6.50 5.61 5.44

Pykhtin ES (%) 5.67 6.98 12.14 19.74 22.08

Absolute error (bp) 1 0 –2 –4 2

Relative error (%) 0.26 –0.07 –0.16 –0.21 0.09

CHKR I ES (%) 5.66 6.94 11.92 19.17 21.38

Absolute error (bp) 0 –4 –24 –61 –68

Relative error (%) 0.0 –0.57 –1.97 –3.08 –3.08

CHKR II ES (%) 5.64 6.94 12.06 19.52 21.81

Absolute error (bp) –2 –4 –10 –26 –25

Relative error (%) –0.35 –0.57 –0.82 –1.31 –1.13

D€ullmann ES (%) 5.93 7.46 13.52 21.07 23.58

Absolute error (bp) 27 48 136 129 152

Relative error (%) 4.71 6.95 11.19 6.51 6.90

Table 5.6 Comparison of the models for five high concentrated portfolios with absolute error in

basis points (bp) and relative error in percent (%)

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

MC-Sim. ES (%) 7.69 9.22 15.41 24.41 27.10

VaR (%) 7.48 9.17 15.36 24.51 27.06

Absolute error (bp) –21 –5 –5 10 –6

Relative error (%) –2.73 –0.54 –0.32 0.41 0.15

Basel II VaR (%) 6.12 7.59 12.95 20.89 23.26

Absolute error (bp) –157 –163 –246 –352 –384

Relative error (%) –20.42 –17.68 –15.96 –14.42 –14.17

Pykhtin ES (%) 7.66 9.29 15.46 24.39 27.03

Absolute error (bp) –3 7 5 –2 –7

Relative error (%) –0.35 0.76 0.31 –0.08 –0.24

CHKR I ES (%) 7.40 9.08 15.59 25.07 27.95

Absolute error (bp) –29 –14 18 66 85

Relative error (%) –3.77 1.52 1.17 2.70 3.14

CHKR II ES (%) 7.22 8.86 15.19 24.38 27.14

Absolute error (bp) –47 –36 –22 –3 4

Relative error (%) –6.11 –3.90 –1.43 –0.12 0.15

D€ullmann ES (%) 8.97 11.30 19.77 28.26 31.21

Absolute error (bp) 128 208 436 385 411

Relative error (%) 16.60 22.52 28.27 15.77 15.17
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to construct portfolios that are better diversified than the overall credit market.323

Apart from insignificant deviations, both simulated risk measures lead to the same

solutions. Again, the Pykhtin model approximates the “real” risk very good for all

types of credit quality. The CHKR model I underestimates the risk for high quality

portfolios with up to 3%. The CHKR model II underestimates the risk, too, but the

approximation error is negligible. Again, the model of D€ullmann overestimates the

true risk and leads to a similar performance as the Basel II model.

5.3.2 Simulation Study for Homogeneous and Heterogeneous
Portfolios

To achieve more general results, we test the models for different, randomly

generated portfolios. For this reason, we implement four simulation studies. In

these studies, we analyze the accuracy for homogeneous as well as for heteroge-

neous portfolios with respect to PD and EAD. In each simulation run, we generate a

portfolio and determine its ES by the different models. After 100 runs, we calculate

the root mean squared error for the outcomes of the Pykhtin model, the CHKR

models I and II,324 and the model of D€ullmann in absolute and relative terms to

quantify the performance of the models in comparison to Monte Carlo simulations

using 500,000 trials. Furthermore, we calculate the VaR with the Basel II formula

and with a Monte Carlo simulation to measure its accuracy compared to ESmf. In the

following, we describe the four simulation settings.

Simulation I. In this scenario, we generate portfolios with homogenous exposure

sizes and homogenous PDs, that is, wi ¼ 1=5000 and PDi ¼ PD ¼ const for each

credit. To test the accuracy for different portfolio qualities, a PD is drawn from a

uniformly distribution between 0 and 10% before each new run. The sector struc-

ture and correlation is the same as in Sect. 5.2.1.

Simulation II. We generate portfolios with homogenous exposure sizes but

heterogeneous PDs. For each sector, we randomly determine one of the quality

distributions from Fig. 4.7. After that, we draw the PD for each credit of the sector

according to this quality distribution. The exposure size remains as in Simulation I.

Again, the sector structure and correlation is taken from Sect. 5.2.1.

Simulation III. We generate portfolios with homogenous PDs as in Simulation I

but with heterogeneous exposure sizes. Firstly, we randomly choose the number of

sectors between 2 and 11. Then, we apply a uniform distribution between 0 and 1

for the weight of every sector and scale this such that the weights sum up to one.

The weights for the credits in each sector are determined in the same manner. The

correlations remain unchanged.

323If we consider all 25,000 simulated portfolios from Sect. 5.2.3, the lowest measured economic

capital requirement was even 26% lower than the regulatory capital. This underlines the prospects

of actively managing credit portfolios, e.g. with credit derivatives, but this is not in the scope of

this thesis.
324CHKR I still corresponds to the DF-function based on Monte Carlo simulation and CHKR II on

the Pykhtin formula.
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Simulation IV. In this setting, the PDs as well as the exposure sizes of the

generated portfolios are heterogeneous. The PDs are determined as in Simulation

II and the exposure sizes as in Simulation III.

In each simulation, we calculate the intra-sector correlations with (5.8) and

choose 5,000 credits. These portfolios contain a relatively low amount of name

concentration. Instead, we focus on sector concentration. The reason is that the

identical methodology for measuring name concentrations, the granularity adjust-

ment, can be used within all implemented approaches. Thus, we prefer to avoid

name concentrations to be able to separately analyze the effect of sector concentra-

tions. The degree of sector concentration differs between the simulations. In Simu-

lation I and II, the portfolios consist of homogenous exposures, so their HHI is in

each case 1=11 ¼ 9:1%. This equals the value for a naı̈ve diversified portfolio. On

the contrary, in Simulation III and IV exposures are chosen randomly and the HHI of

the generated portfolios can take values between 9.1% (naı̈ve diversification) and 1

(perfect concentration). The mean of these HHIs is around 30% in each simulation,

which is only slightly higher than the HHIs of the bank portfolios analyzed by

Acharya et al. (2006), which shows that the setting leads to a realistic degree of

diversification.325 The results of our simulation study can be found in Table 5.8.

Again, the outcomes of the Pykhtin model are good approximations of the “true”

ES calculated with Monte Carlo simulations. Especially, if EADs are heterogeneous

(simulation setting III and IV), the results are very good. Both types of the CHKR

Table 5.8 Accuracy of different models in comparison with the “true” ES calculated with Monte

Carlo simulations for the specified simulation studies

Simulation

Setting I

Simulation

Setting II

Simulation

Setting III

Simulation

Setting IV

MC-Sim. VaR Ø Absolute error (bp) 18 6 22 8

Ø Relative error (%) 0.67 0.43 0.77 0.60

Basel II Ø Absolute error (bp) 259 186 264 379

Ø Relative error (%) 11.66 13.70 8.81 25.76

Pykhtin Ø Absolute error (bp) 14 11 54 18

Ø Relative error (%) 0.64 0.81 3.40 1.26

CHKR I Ø Absolute error (bp) 54 11 47 20

Ø Relative error (%) 1.73 0.79 1.65 1.53

CHKR II Ø Absolute error (bp) 54 12 46 21

Ø Relative error (%) 1.72 0.84 1.56 1.59

D€ullmann Ø Absolute error (bp) 103 185 139 224

Ø Relative error (%) 5.84 8.58 5.84 11.28

325Acharya et al. (2006) examined credit portfolios of 105 Italian banks during the period

1993–1999. In this study, most bank portfolios had a HHI between 20% and 30%. However, it

has to be considered that the number of different industry sectors was 23 whereas we use 11

different sectors. Thus, for a comparable degree of diversification their calculated HHI have to be

slightly smaller than our HHIs.
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model lead to very stable results in all simulation settings. Interestingly, the CHKR

model performs even better if PDs are heterogeneous, probably because the

portfolios used for calculation of the functional form have heterogeneous PDs,

too, and thus the resulting portfolios are more similar. It is somewhat surprising

that in Simulation III the CHKRmodel shows a better performance than the Pykhtin

model, even if the Pykhtin formula is used for determination of the diversification

factor. Probably, the approximation errors of the Pykhtin model are partially

smoothed by the regression from (5.40). The results of the D€ullmann model are

not convincing. The model can generate better outcomes than the Basel II model but

performs materially worse than the other presented models. A reason could be that

the portfolios which were used for the calibration of the model are too different from

the portfolios of the simulation study. Against this background, it could be interest-

ing to repeat the calibration procedure which has been applied to the CHKR model

instead of the procedure presented in Sect. 5.2.4.3 because these calibration portfo-

lios are very similar to those used in the simulation study. Of course, this calibration

would be much more time-consuming than the applied calibration if we use all

25,000 randomly generated portfolios of the CHKR calibration instead of the 360

deterministic portfolios suggested by D€ullmann (2006).

The comparison of the risk measures with different confidence levels shows an

almost perfect match between ESmf and VaRmf. The relative error is smaller than

1% in each case, so our simulation study clarifies that the above-mentioned

theoretical problems of the VaR are not practically relevant for a very broad

range of credit portfolios. Hence, there is nothing to be said against the use of the

VaR for determining the credit risk from a practical point of view even if the

portfolio incorporates sector concentration risk. The Basel formula, however,

shows the largest inaccuracy of all tested models for any simulation. Since in

simulation setting I and II a naı̈ve diversified portfolio is taken as a basis, the

Basel formula overestimates the risk in every case due to the diversification effect.

A plot of the relative errors of the Basel formula and of VaRmf in simulation

setting III, sorted in ascending order, can be found in Fig. 5.3. Apart from slightly

higher deviations, a plot with a similar characteristics results for simulation setting

IV. It can be seen that for more than 50% of the simulated portfolios the Basel VaR

is too low. That means the risk measured under Pillar 1 is underestimated compared

to the “real” risk. In general, this happens when the sector concentration of the

generated portfolio increases, as already demonstrated for deterministic portfolios.

Thus, the simulation study accentuates the need for considering sector concentra-

tion when calculating the risk of a credit portfolio. Otherwise, the risk can be

massively underestimated. This conclusion coincides with that of BCBS (2006),

which points out that sector concentration can increase the capital requirement up to

40%. The maximal deviation of VaRmf is around 3%. Actually, for most of the

generated portfolios the error is almost zero. Thus, the deviation is negligible for

practical implementation. Nevertheless, in order to verify whether there is a sys-

tematic pattern, which may help to explain the occurrence of these deviations in the

multi-factor setting, we have tried to find portfolio variables such as HHI, average
correlation, or average PD that can explain these deviations. Since our analyses
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did not show a link between the deviations and any of the mentioned variables, it

seems that the occurrence is unsystematic.

As the purpose of deriving (semi-)analytical approximation formulas for the

VaR or the ES is an acceleration of the computation time, we compare the runtime

of the demonstrated methods in Table 5.9.326

The main advantage of the Pykhtin model is that it can be applied without an

excessive calibration procedure and that it is considerably faster than Monte Carlo

simulations without leading to major approximation errors. The advantage of the

D€ullmann model is that its application is much faster but this comes at the cost of a

higher approximation error. When comparing both alternative implementations of

the CHKR model, we strongly propose to use the Pykhtin model for calibration

(CHKR II) instead of Monte Carlo simulations (CHKR I), as the approximation

–30%

–25%

–20%

–15%

–10%

–5%

0%

5%

10%

15%

20%

25%

10

R
el

at
iv

e 
E

rr
o

r

Portfolio Number

VaR (Basel) VaR (Multi -Factor)

20 30 40 50 60 70 80 90 100

Fig. 5.3 Deviations of VaRBasel and VaRmf from ESmf

Table 5.9 Comparison of the

runtime
Runtime: Calibration Runtime: Application

MC-Simulation 20 min

Pykhtin �5 s–2 min

CHKR I 30 days 0.01 s

CHKR II 150 min 0.01 s

D€ullmann 240 min �1–10 s

326The runtimes refer to a quad-core PC with 2.66 GHz CPUs (calculated on one core).
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accuracy is almost identical but the computation time for determination of the DF-
function is significantly lower. As this calibration procedure has to be computed

only once for a specified correlation structure and the application of the formula is

very fast, in most situations the CHKR type model should be a very good choice.

5.4 Interim Result

In this chapter, we have proposed a methodology to perform multi-factor models

that are able to measure concentration risk in credit portfolios in terms of economic

capital. In contrast to the existing literature regarding concentration risk, this

procedure delivers results that are consistent with Basel II and has the advantage

of quite low data requirements since the intra-sector correlation does not have to be

estimated from historical bank data. Furthermore, we have applied this

methodology to different multi-factor approaches. Since the calibration or applica-

tion of these approaches is quite time-consuming for large portfolios in the original

settings, which is one of the main problems of these approaches, we have demon-

strated how these calculations can be accelerated significantly. As a next step, we

have compared the performance of these approaches within a simulation study as

the capability of different models to measure sector concentration risk has only

been tested in a rather brief analysis of D€ullmann (2007) before. It could be shown

that it is possible to achieve good approximations in reasonable time if the

approaches are adjusted in the proposed way. We have also analyzed whether the

theoretical shortcomings of the Value at Risk, which can arise when leaving

the ASRF framework, lead to undesirable results. Although it is indisputable that

the ES has theoretical advantages over the VaR, which has already been demon-

strated in several contrived portfolio examples, our framework seems well suited to

explore this question for a variety of more realistic credit portfolios. We find that

the accuracy of the VaR turns out to be almost perfect compared to the ES for a

multitude of generated portfolios. Therefore, in our opinion, it is unproblematic to

use the VaR for measuring sector concentration risk in credit portfolios.

During the specification of the multi-factor setting, we have determined input

parameters, especially the inter- and intra-sector correlations, in a way that the

results are comparable with the regulatory Pillar 1 capital. Thus, we do not follow

some approaches that assume a pure diversification effect compared with the Basel

II formula. Instead, we relate the results to a well-diversified portfolio as assumed

when calibrating the Basel II formula and determine a function for the implied

intra-sector correlation. Hence, it is possible to directly consider the extent of credit

risk concentrations in the assessment of capital adequacy under Pillar 2. Using these

modifications, we have performed an extensive numerical study similar to Cespedes

et al. (2006) to get a closed form approximation formula and show how the

calibration can be accelerated significantly without worsening the accuracy. In

addition, we suggest computing the multi-factor adjustment and the infection

model on a bucket instead of a borrower level. This allows computing the formulas
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of Pykhtin (2004) as well as the formulas of D€ullmann (2006) much faster than

Monte Carlo simulations even for a high number of credits. Moreover, due to the

theoretical advantages of ES, we have determined the approximation formulas for

our modified variants of Cespedes et al. (2006) and D€ullmann (2006) using the risk

measure ES instead of the VaR.

Having assured Basel II consistent capital requirements, we have analyzed the

impact of credit concentration risk and have carried out a simulation study to compare

the performance of the (modified) models from Pykhtin (2004), Cespedes et al.

(2006), and D€ullmann (2006). We find that the Pykhtin model leads to very good

results for homogeneous as well as heterogeneous PDs if EADs are homogeneous.

The performance is slightly lower for heterogeneous EADs. The results of the

Cespedes-type model have a throughout high accuracy. Interestingly, the approach

works better for heterogeneous portfolios. In comparison, the model of D€ullmann

(2006) performs rather poorly. In general, the models of Pykhtin (2004) as well as the

Cespedes-type model are both well-suited for approximating the economic capital in

a multi-factor setting when adjusted in the proposed way. The main advantage of the

Pykhtin model is that it can directly be applied to an arbitrary portfolio type, whereas

the Cespedes-type approach should not be used without initially performing the

demonstrated extensive numerical work if the portfolio structure is very different.

On the contrary, the results of the Cespedes-type model are slightly better for

heterogeneous portfolios and it allows for ad-hoc analyses including sensitivity

analyses when the non-recurring extensive numerical work is progressed.

5.5 Appendix

5.5.1 Optimal Choice of the Single Correlation Factor

To relate ~L to ~L, it is assumed that the new systematic factor ~x has a linear

dependence to the original sector factors:327

~x ¼
X

K

k¼1

bk � ~zk; (5.73)

with
X

K

k¼1

b2k ¼ 1: (5.74)

Condition (5.74) satisfies that the new systematic factor still has a variance

of 1. In order to specify the correlation factors ci and the coefficients bk, it will be
required that the loss ~L equals the conditional expectation of the “true” loss Eð~Lj~xÞ.

327In contrast to this representation, Pykhtin (2004) applies these and the following formulas to n
sector factors whereas we use K sector factors with Kbn. This can lead to a significant reduction of
the computation time as will be shown later on.
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This assures that the first element of the subsequently performed Taylor series

expansion vanishes.328 To determine Eð~Lj~xÞ, we first recall that the asset return of

obligor i in sector s can be written as

~as;i ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ~xs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi: (5.75)

Now, each original sector factor ~xs is decomposed into a part that is related to the

single-factor ~x and a part that is independent of this factor:

~xs ¼ rs � ~xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rs
2

q

� ~�s; (5.76)

with ~�s � Nð0; 1Þ. Using (5.2), (5.73), and the independence of ~zi; ~zj if i 6¼ j, the
correlation parameter rs can be expressed as

rs ¼ Corr ~xs;~x
� � ¼ Corr

X

K

k¼1

as;k � ~zk;
X

K

k¼1

bk � ~zk
 !

¼
X

K

k¼1

as;k � bk � V ~zkð Þ ¼
X

K

k¼1

as;k � bk:
(5.77)

Using this notation, the asset return (5.75) can now be written as

~as;i ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ~xs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi

¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � rs � ~xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rs
2

q

� ~�s
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi

¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � rs � ~xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i � rIntra;i � rs2
q

� ~�s þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi:

(5.78)

The independent standard normally distributed random variables ~�s and ~xi
can be combined into a new standard normally distributed random variable ~zi,
leading to

~as;i ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ri � ~xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ri
� �2

r

� ~zi; (5.79)

with ri ¼ rs for each obligor i in sector s. Since the variable ~zi is independent of ~x,
we can use the known formula of the single-factor model for the conditional

expectation

E ~Lj~x� � ¼
X

n

i¼1

wi � LGDi � F
F�1ðPDiÞ � ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i

p � ri � F�1ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i
p � ri
� �2

r

2

6

6

4

3

7

7

5

: (5.80)

328This simplification of the Taylor series could already be used for the granularity adjustment in

Sect. 4.2.1.1.
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The mentioned condition ~L ¼ E ~Lj~x� �

leads to

~L ¼ E ~Lj~x� �

, F
F�1ðPDiÞ � ci � ~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

" #

¼ F
F�1ðPDiÞ � ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i

p � ri � F�1ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i
p � ri
� �2

r

2

6

6

4

3

7

7

5

, ci ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p �

X

K

k¼1

ai;k � bk;

(5.81)

using (5.9), (5.80), (5.77), and ai;k ¼ as;k for each obligor i in sector s. While rIntra;i
and ai;k are known, the coefficients bk are unknown.

While (5.81) already satisfies that the first-order term of the Taylor series

vanishes, the concrete choice of the parameter set {bk} is critical concerning the

distance between the zeroth-order term qað~LÞ and the unknown quantile qað~LÞ.
Unfortunately, it is not obvious how this distance can be minimized. Thus, Pykhtin

(2004) relies on the intuition that coefficients which maximize the (weighted)

correlation between the single factor ~x and the sector factors {~xs} should lead to

good results. This leads to the following maximization problem:

max
bkf g

X

n

i¼1

di � ri
 !

¼ max
bkf g

X

n

i¼1

di �
X

K

k¼1

ai;k � bk
 !

; (5.82)

subject to

X

K

k¼1

b2k ¼ 1: (5.83)

The solution of this optimization problem is329

bk ¼
X

n

i¼1

di � aik
2t

; (5.84)

where the positive constant Lagrange multiplier t is chosen in a way that {bk}
satisfies the constraint. As a final step, the weighting factor di has to be chosen.

After trying several specifications, Pykhtin (2004) uses

di ¼ wi � LGDi � F
F�1ðPDiÞ þ ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i

p � F�1ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
p

" #

; (5.85)

329Cf. Pykhtin (2004).
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which is the VaR formula in a single-factor model. The intuition behind this choice

is that obligors with a high exposure in terms of VaR should have a large weight in

the maximization problem whereas obligors with a small VaR should have a minor

impact. Summing up, the correlation parameter ci results from (5.81), where the

coefficients bk are determined by (5.83)–(5.85).

5.5.2 Conditional Correlation

The correlation conditional on ~x between the asset returns from (5.19) can be

written as

rxij ¼ Corr ~as;i; ~at;jj~x
� �

¼
Cov

P

K

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i
p � as;k � ci � bk
� �

� ~zk;
P

K

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffirIntra;j
p � at;k � cj � bk
� �

� ~zk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ~as;ij~x
� �

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ~at;jj~x
� �

q

¼
P

K

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i
p � as;k � ci � bk
� �

� ffiffiffiffiffiffiffiffiffiffiffiffirIntra;j
p � at;k � cj � bk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cj2
p

;

(5.86)

using the independence of the factors ~zk. The numerator can be simplified using

P

K

k¼1

as;k � bk ¼ ci

.

ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i
p

from (5.81) and
P

K

k¼1

b2k ¼ 1 from (5.74):

X

K

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � as;k � ci � bk
� �

� ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;j
p � at;k � cj � bk
� �

¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;j
p �

X

K

k¼1

as;k � at;k � ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � cj �

X

K

k¼1

as;k � bk

� ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;j
p � ci �

X

K

k¼1

at;k � bk þ ci � cj �
X

K

k¼1

bk
2

¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;j
p �

X

K

k¼1

as;k � at;k � ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � cj � ci

ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i
p

� ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;j
p � ci � cj

ffiffiffiffiffiffiffiffiffiffiffiffirIntra;j
p þ ci � cj

¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;j
p �

X

K

k¼1

as;k � at;k � cj � ci:

(5.87)
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This leads to

rxij ¼
ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i

p � ffiffiffiffiffiffiffiffiffiffiffiffirIntra;j
p �P

K

k¼1

as;k � at;k � ci � cj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cj2
p

: (5.88)

5.5.3 Calculation of the Decomposed Variance

In order to determine the conditional variance, it is decomposed into the following

terms:330

V ~Lj~x ¼ x
� � ¼ V E ~Lj ~zkf g� �j~x ¼ x

� �þ E V ~Lj ~zkf g� �j~x ¼ x
� �

: (5.89)

For calculation of these terms, first the expressions (a) Eð~Ljf~zkgÞ, (b)

Eð~L2jf~zkgÞ, and (c) Vð~Ljf~zkgÞ will be calculated. The conditional loss is given as

~Ljf~zkg ¼
X

i

wi � gLGDijf~zkg
� �

� 1 ~Dif gjf~zkg
� �

; (5.90)

and for stochastically independent LGDs this leads to

~Ljf~zkg ¼
X

i

wi � gLGDi � 1 ~Dif gjf~zkg
� �

: (5.91)

(a) With E gLGDi

� �

¼: ELGDi and E 1 ~Dif gjf~zkg
� �

¼: pi f~zkgð Þ we obtain:

E ~Ljf~zkg
� � ¼

X

i

wi � ELGDi � pi f~zkgð Þ: (5.92)

(b) Consider that 12 ~Dif g ¼ 1 ~Dif g, E gLGD
2

� �

¼ E2
gLGD

� �

þ V gLGD
� �

¼:

ELGD2 þ VLGD, and

E LGDiLGDj

� � ¼ Cov LGDi; LGDj

� �þ E LGDið ÞE LGDj

� �

¼ E LGDið ÞE LGDj

� �

¼: ELGDiELGDj;

(5.93)

330The following calculations are based on Tasche (2006a), p. 41 ff.
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as well as

E 1 ~Dif g1 ~Djf gjf~zkg
� �

¼ Cov 1 ~Dif g; 1 ~Djf gjf~zkg
� �

þ E 1 ~Dif gjf~zkg
� �

E 1 ~Djf gjf~zkg
� �

¼ E 1 ~Dif gjf~zkg
� �

E 1 ~Djf gjf~zkg
� �

¼ pi f~zkgð Þpj f~zkgð Þ:
(5.94)

Moreover, we have

X

i

xi

 !2

¼
X

i

X

j

xixj ¼
X

i

xi
2 þ

X

i

X

j6¼i

xixj; (5.95)

X

j6¼i

xixj ¼
X

j

xixj � xi
2: (5.96)

Thus, we obtain:

E ~L
2jf~zkg

� �

¼ E
X

i

wi
gLGDi1 ~Dif g

� �2

jf~zkg
" #

¼ E
X

i

wi
2
gLGDi

2
12 ~Dif gjf~zkg

" #

þ E
X

i

X

j 6¼i

wiwj
gLGDi

gLGDj1 ~Dif g1 ~Djf gjf~zkg
" #

¼
X

i

wi
2E LGDi

2
� �

pi f~zkgð Þ

þ
X

i

X

j 6¼i

wiwjE LGDiLGDj

� �

E 1 ~Dif g1 ~Djf g
� �

¼
X

i

wi
2 ELGDi

2 þ VLGDi

� �

pi f~zkgð Þ

þ
X

i

X

j 6¼i

wiwjELGDiELGDjpi f~zkgð Þpj f~zkgð Þ

¼
X

i

wi
2 ELGDi

2 þ VLGDi

� �

pi f~zkgð Þ �
X

i

wi
2ELGDi

2pi
2 f~zkgð Þ

þ
X

i

X

j

wiwjELGDiELGDjpi f~zkgð Þpj f~zkgð Þ

¼
X

i

wi
2 ELGDi

2 pi f~zkgð Þ � pi
2 f~zkgð Þ� �þ VLGDipi f~zkgð Þ� �

þ E2 ~Ljf~zkg
� �

:

(5.97)
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(c) The conditional variance Vð~Ljf~zkgÞ is equal to

V ~Ljf~zkg
� � ¼ E ~L

2jf~zkg
� �

� E2 ~Ljf~zkg
� �

¼
X

i

wi
2 ELGDi

2 pi f~zkgð Þ � pi
2 f~zkgð Þ� �þ VLGDipi f~zkgð Þ� �

:
(5.98)

(d) Using the law of iterated expectation, we have

piðxÞ ¼ E 1 ~Dif gj~x ¼ x
� �

¼ E E 1 ~Dif gjf~zkg
� �

jx
h i

¼ E pi f~zkgð Þjx½ �: (5.99)

Thus, with (5.98) the expectation of the conditional variance can be written as

E V ~Ljf~zkg
� �j~x¼ x

� �¼
X

i

wi
2 ELGDi

2 E pi f~zkgð Þjx½ ��E pi
2 f~zkgð Þjx� �� ��

þVLGDiE pi f~zkgð Þjx½ �Þ

¼
X

i

wi
2 ELGDi

2 piðxÞ�P 1 ~Dif g¼1
� �

^ 1 ~Di
0f g ¼1

� �

jx
h i� ��

þVLGDipiðxÞÞ:
(5.100)

For independent idiosyncratic factors ~zi;~zi
0 � N ð0; 1Þ and with

piðxÞ :¼ F
F�1ðPDiÞ � ci � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

 !

, F�1ðPDÞ � ci � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p ¼ F�1 piðxÞð Þ; (5.101)

we get

P 1 ~Dif g ¼ 1
� �

^ 1 ~Di
0f g ¼ 1

� �

jx
h i

¼ P ci � ~xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

� ~zi � F�1ðPDiÞ; ci � ~xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

� ~zi
0 � F�1ðPDiÞjx

h i

¼ P ~zi �
F�1ðPDiÞ � ci � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p ;~zi

0 � F�1ðPDiÞ � ci � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

" #

¼ F2 F�1 piðxÞð Þ;F�1 piðxÞð Þ; rxii
� �

;

(5.102)
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with the correlation conditional on x of (5.20). Hence, (5.100) results in

E V ~Ljf~zkg
� �j~x ¼ x

� � ¼
X

i

wi
2 ELGDi

2 piðxÞ � F2 F�1 piðxÞð Þ;F�1 piðxÞð Þ; rxii
� �� ��

þVLGDipiðxÞÞ:
(5.103)

(e) Using (5.92), the variance of the conditional expectation can be expressed as

V E ~Ljf~zkg
� �j~x ¼ x

� �

¼ E E2 ~Ljf~zkg
� �jx� �� E2 E ~Ljf~zkg

� �jx� �

¼ E E2
X

i

wi
gLGDi1 ~Dif gjf~zkg

" #

jx
 !

� E2
X

i

wiELGDipi f~zkgð Þjx
 !

¼ E
X

i

wiELGDipi f~zkgð Þ
 !2

jx
2

4

3

5�
X

i

wiELGDipiðxÞ
 !2

;

(5.104)

leading to

V E ~Ljf~zkg
� �j~x ¼ x

� �

¼ E
X

i

X

j

wiwjELGDiELGDjpi f~zkgð Þ � pj f~zkgð Þjx
" #

�
X

i

X

j

wiwjELGDiELGDjpiðxÞpjðxÞ

¼
X

i

X

j

wiwjELGDiELGDjE pi f~zkgð Þ � pj f~zkgð Þjx� �

�
X

i

X

j

wiwjELGDiELGDjpiðxÞpjðxÞ

¼
X

i

X

j

wiwjELGDiELGDj P 1 ~Dif g ¼ 1
� �

^ 1 ~Djf g ¼ 1
� �

jx
h i

� piðxÞpjðxÞ
h i

:

(5.105)

Analogous to (5.102) and using the conditional correlation (5.20), this can be

expressed as:

V E ~Ljf~zkg
� �j~x ¼ x

� � ¼
X

i

X

j

wiwjELGDiELGDj

� F2 F�1 piðxÞð Þ;F�1 pjðxÞ
� �

; rxij
� �

� piðxÞpjðxÞ
h i

:

(5.106)
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5.5.4 Derivatives of the Decomposed Variance Terms

As both conditional variance terms are linear in the bivariate normal distribution,

the derivative of the bivariate normal distribution will be calculated subsequently.

Then, the derivatives of �12;cðxÞ and �GA2;c ðxÞ will be computed.

Proposition. The derivative of the bivariate normal distribution can be written as:

d

dx
F2 F�1 pi xð Þð Þ;F�1 pj xð Þ� �

; rxij
� �

¼ dpi xð Þ
dx

F
F�1 pj xð Þ� �� rxij � F�1 pi xð Þð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

þ dpj xð Þ
dx

F
F�1 pi xð Þð Þ � rxij � F�1 pj xð Þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

:

(5.107)

Proof. Using the notation

yiðxÞ ¼ F�1ðPDiÞ � ci � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p ; yjðxÞ ¼ F�1ðPDjÞ � cj � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cj2
p ; (5.108)

and the chain rule, we get

d

dx
F2 F�1 pi xð Þð Þ;F�1 pj xð Þ� �

; rxij
� �

¼ d

dx
F2 yi xð Þ; yj xð Þ; rxij
� �

¼ dyi
dx
|{z}

ðIÞ

@

@yi
F2 yi; yj; rxij
� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIIÞ

þ dyj
dx
|{z}

ðIIIÞ

@

@yj
F2 yi; yj; rxij
� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIVÞ

:

(5.109)

For calculation of term (II) and (IV), we rewrite the bivariate normal distribution

according to Appendix 2.8.6 as

F2 yi; yj; rxij
� �

¼
Z

yj

z¼�1
’ðzÞF yi � rxij � z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

dz: (5.110)
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Thus, we have

@

@yi
F2 yi;yj;rxij
� �

¼ @

@yi

Z

yj

z¼�1
’ðzÞF yi�rxij � z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

dz

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

Z

yj

z¼�1
’ðzÞ’ yi�rxij � z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

dz

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

Z

yj

z¼�1

1

2p
exp �1

2
z2þ yi�rxij � z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

2
2

6

6

6

4

3

7

7

7

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð	Þ

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

dz:

(5.111)

The term (*) is equivalent to

z2 þ yi � rxij � z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

2

¼
1� rxij

� �2
� �

z2 þ yi
2 � 2yirxijzþ rxij

� �

z2

1� rxij
� �2

¼ z2 � 2yirxijzþ yi
2

1� rxij
� �2

¼
z2 � 2yirxijzþ yi

2 þ yi
2 rxij
� �2

� yi
2 rxij
� �2

1� rxij
� �2

¼ z� rxijyi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

2

þ yi
2:

(5.112)
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Hence, (5.111) can be written as

@

@yi
F2 yi;yj;rxij
� �

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

Z

yi

z¼�1

1

2p
exp �1

2
yi
2þ z�rxijyi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

2
2

6

6

6

4

3

7

7

7

5

0

B

B

B

@

1

C

C

C

A

dz

¼’ yið Þ
Z

yj

z¼�1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r ’
z�rxijyi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

dz:

(5.113)

For solving the integral, we substitute t :¼ z�rxijyi
ffiffiffiffiffiffiffiffiffiffiffiffi

1�ðrx
ij
Þ2

q , and thus dz
dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðrxijÞ2
q

.

This leads to

@

@yi
F2 yi; yj; rxij
� �

¼ ’ yið Þ
Z

yj�rx
ij
yi

ffiffiffiffiffiffiffiffiffiffi

1�ðrx
ij
Þ2

q

t¼�1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r ’ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

dt

¼ ’ yið ÞF yj � rxijyi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

:

(5.114)

Analogously, the term (IV) of (5.109) is equivalent to

@

@yj
F2 yi; yj; rxij
� �

¼ @

@yj

Z

yi

z¼�1
ðzÞF yj � rxijz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

dz

¼ ’ yj
� �

F
yi � rxijyj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

:

(5.115)

The derivatives (I) and (III) of (5.109) are given as

dyi xð Þ
dx

¼ � ci
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p and

dyj xð Þ
dx

¼ � cj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cj2
p : (5.116)
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Thus, inserting (5.114), (5.115), and (5.116) into (5.109), the derivative of the

bivariate normal distribution finally results in

d

dx
F2 yi xð Þ; yj xð Þ; rxij
� �

¼ � ci
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p ’ yið ÞF yj � rxijyi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

� cj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cj2
p ’ yj

� �

F
yi � rxijyj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

¼ dpi xð Þ
dx

F
F�1 pj xð Þ� �� rxijF

�1 pi xð Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

þ dpj xð Þ
dx

F
F�1 pi xð Þ½ � � rxijF

�1 pj xð Þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

;

(5.117)

where the derivatives
dpi xð Þ
dx and

dpj xð Þ
dx are given by (5.16), which is equal to

proposition (5.107).

As a next step, the derivatives of �12;cðxÞ and �GA2;c ðxÞ will be calculated. With

�12;c xð Þ ¼
X

n

i¼1

X

n

j¼1

wiwjELGDiELGDj

� F2 F�1 pi xð Þð Þ;F�1 pj xð Þ� �

; rxij
� �

� pi xð Þpj xð Þ
h i

; ð5:118Þ

we get

d�12;c xð Þ
dx

¼
X

n

i¼1

X

n

j¼1

wiwjELGDiELGDj
d

dx
F2 yi xð Þ; yj xð Þ; rxij
� �

� d

dx
pi xð Þpj xð Þ� �

� �

¼
X

n

i¼1

X

n

j¼1

wiwjELGDiELGDj

� d

dx
F2 yi xð Þ; yj xð Þ; rxij
� �

� dpi xð Þ
dx

pj xð Þ þ dpj xð Þ
dx

pi xð Þ
� �� �

:

(5.119)
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Using the derivative of the bivariate normal distribution from (5.117) yields

d�12;c xð Þ
dx

¼
X

n

i¼1

X

n

j¼1

wiwjELGDiELGDj

� dpi xð Þ
dx

F
F�1 pj xð Þ� �� rxijF

�1 pi xð Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

0

B

B

@

þ dpj xð Þ
dx

F
F�1 pi xð Þ½ � � rxijF

�1 pj xð Þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

� dpi xð Þ
dx

pj xð Þ � dpj xð Þ
dx

pi xð Þ
�

:

(5.120)

Comparing the terms on the right-hand side, it can be found that the first and

second summand as well as the third and fourth summand only differ concerning

the indices i and j. Due to the double sum, each combination of i and j occurs twice.
Thus, (5.120) can be simplified to:331

d�12;c xð Þ
dx

¼ 2 �
X

n

i¼1

X

n

j¼1

wiwjELGDiELGDj
dpi xð Þ
dx

� F
F�1 pj xð Þ� �� rxijF

�1 pi xð Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

� pj xð Þ

0

B

B

@

1

C

C

A

:

(5.121)

Similarly, the derivative of

�GA2;c xð Þ ¼
X

n

i¼1

wi
2 ELGDi

2 pi xð Þ � F2 F�1 pi xð Þð Þ;F�1 pi xð Þð Þ; rxii
� �� ��

þVLGDipi xð ÞÞ ð5:122Þ

331It has to be noticed that the conditional correlation matrix is symmetric, so we have rxij ¼ rxji
for all i, j.
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is given as

d�GA2;c xð Þ
dx

¼
X

n

i¼1

w2
i ELGD2

i

dpi xð Þ
dx

� d

dx
F2 yi xð Þ; yi xð Þ; rxii
� �

� �

þ VLGDi
dpi xð Þ
dx

� �

:

(5.123)

Inserting the derivative of the bivariate normal distribution (5.117) finally leads to

d�GA2;c xð Þ
dx

¼
X

n

i¼1

w2
i

dpi xð Þ
dx

�
 

ELGD2
i

"

1� 2F

 

F�1 pi xð Þ½ � � rxiiF
�1 pi xð Þ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxii
� �2

q

!#

þ VLGDi

!

:

(5.124)

5.5.5 Moment Matching in the BET-Model

5.5.5.1 Matching the First Moment

The expected loss of the original portfolio can be calculated as

E ~L
orig

� �

¼
X

S

s¼1

X

ns

i¼1

ws;i � LGD � E 1 ~Ds;if g
� �

¼
X

S

s¼1

X

ns

i¼1

ws;i � LGD � PDs;i; (5.125)

and the expected loss of the hypothetical portfolio as

E ~L
hyp

� �

¼
X

D

i¼1

1

D
� LGD � E 1 ~Dif g

� �

¼ 1

D
� LGD �

X

D

i¼1

p

¼ 1

D
� LGD � D � p ¼ LGD � p;

(5.126)

with E 1 ~Dif g
� �

¼ p for all i. Thus, matching the expectation for both portfolios

leads to

E ~L
orig

� �

¼! E ~L
hyp

� �

,
X

S

s¼1

X

ns

i¼1

ws;i � LGD � PDs;i ¼ LGD � p

, p ¼
X

S

s¼1

X

ns

i¼1

ws;i � PDs;i:

(5.127)
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5.5.5.2 Matching the Second Moment

For the original portfolio, the variance can be calculated as

V ~L
orig

� �

¼ V
X

S

s¼1

X

ns

i¼1

ws;i � LGD � 1 ~Ds;if g
 !

¼ LGD2 � V
X

S

s¼1

X

ns

i¼1

ws;i � 1 ~Ds;if g
 !

¼ LGD2 � Cov
X

S

s¼1

X

ns

i¼1

ws;i � 1 ~Ds;if g;
X

S

t¼1

X

nt

j¼1

wt;j � 1 ~Dt;jf g
 !

¼ LGD2 �
X

S

s¼1

X

S

t¼1

X

ns

i¼1

X

nt

j¼1

ws;i � wt;j � Cov 1 ~Ds;if g; 1 ~Dt;jf g
� �

¼ LGD2 �
X

S

s¼1

X

S

t¼1

X

ns

i¼1

X

nt

j¼1

ws;i � wt;j � Corr 1 ~Ds;if g; 1 ~Dt;jf g
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 1 ~Ds;if g
� �

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 1 ~Dt;jf g
� �

r

:

(5.128)

As the default variable is Bernoulli distributed, the variance terms equal

V 1 ~Ds;if g
� �

¼ PDs;i � 1� PDs;i

� �

and V 1 ~Dt;jf g
� �

¼ PDt;j � 1� PDt;j

� �

(5.129)

and we obtain

V ~L
orig

� �

¼ LGD2 �
X

S

s¼1

X

S

t¼1

X

ns

i¼1

X

nt

j¼1

ws;i � wt;j � Corr 1 ~Ds;if g; 1 ~Dt;jf g
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PDs;i 1� PDs;i

� �

PDt;j 1� PDt;j

� �

q

:

(5.130)

Due to the independence of the default events in the hypothetical portfolio, the

variance of this portfolio is

V ~L
hyp

� �

¼ V
X

D

i¼1

1

D
� LGD � 1 ~Dif g

 !

¼ 1

D2
� LGD2 � V

X

D

i¼1

1 ~Dif g
 !

¼ 1

D2
� LGD2 � D � V 1 ~Dif g

� �

¼ 1

D
� LGD2 � p � 1� pð Þ:

(5.131)
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Matching the variance terms (5.130) and (5.131) leads to

V ~L
orig

� �

¼! V ~L
hyp

� �

,D¼ p� 1�pð Þ
P

S

s¼1

P

S

t¼1

P

ns

i¼1

P

nt

j¼1

ws;i �wt; j �Corr 1 ~Ds;if g;1 ~Dt; jf g
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PDs;i 1�PDs;i

� �

PDt; j 1�PDt; j

� �

q

:

(5.132)

5.5.6 Interrelation of the Pairwise Default Correlation
and the Asset Correlation

Using the standard calculus for the correlation and covariance as well as the

variance of a Bernoulli distributed variable, the pairwise default correlation

between borrower i in sector s and borrower j in sector t can be expressed as

Corr 1 ~Ds;if g; 1 ~Dt;jf g
� �

¼
Cov 1 ~Ds;if g; 1 ~Dt;jf g

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 1 ~Ds;if g
� �

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 1 ~Dt;jf g
� �

r

¼
Cov 1 ~Ds;if g; 1 ~Dt;jf g

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PDs;i � 1� PDs;i

� � � PDt;j � 1� PDt;j

� �

q

¼
E 1 ~Ds;if g � 1 ~Dt;jf g
� �

� E 1 ~Ds;if g
� �

� E 1 ~Dt;jf g
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PDs;i � 1� PDs;i

� � � PDt;j � 1� PDt;j

� �

q :

(5.133)

The expectation values of the individual default events equal PDs;i and PDt;j.

Similar to (5.102), assuming a normally distributed asset return, the expectation

value of a simultaneous default can be written as

E 1 ~Ds;if g � 1 ~Dt;jf g
� �

¼ P 1 ~Ds;if g ¼ 1
� �

^ 1 ~Dt;jf g ¼ 1
� �h i

¼ P ~as;i � F�1ðPDs;iÞ; ~at;j � F�1ðPDt;jÞ
� �

¼ F2 F�1 PDs;i

� �

;F�1 PDt;j

� �

;Corr ~as;i; ~at;j
� �� �

:

(5.134)

Thus, we get

Corr 1 ~Ds;if g; 1 ~Dt;jf g
� �

¼ F2 F�1 PDs;i

� �

;F�1 PDt;j

� �

;Corr ~as;i; ~at;j
� �� �� PDs;i � PDt;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PDs;i 1� PDs;i

� �

PDt;j 1� PDt;j

� �

q :

(5.135)
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5.5.7 Expected Number of Defaults in the Infectious Defaults
Model

Due to the homogeneity of the portfolio and the stochastic independence of all

indicator variables, the expected number of defaults is

E
X

n

i¼1

1 ~Dif g
 !

¼ n � E 1 ~Dif g
� �

¼ n � E ~Zi

� �

¼ n � E ~Xi þ 1� ~Xi

� � � 1�
Y

j 6¼i

1� ~Xj � ~Yj;i

� �

" # !

¼ n � E ~Xi þ 1� ~Xi

� � � 1� 1� ~Xj � ~Yj;i

� �n�1
h i� �

¼ n � E ~Xi

� �þ 1� E ~Xi

� �� � � 1� 1� E ~Xj

� � � E ~Yj;i

� �� �n�1
h i� �

¼ n � pþ 1� pð Þ � 1� 1� p � qð Þn�1
h i� �

¼ n � 1� 1� pð Þ � 1� p � qð Þn�1
� �

:

(5.136)
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